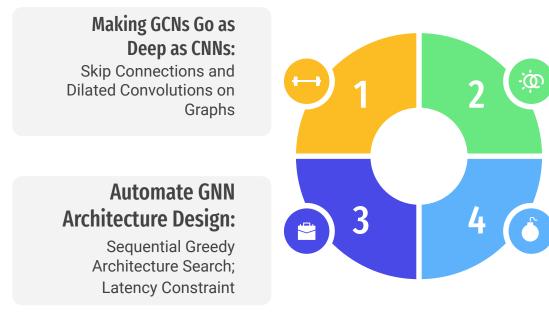


Towards Structured Intelligence with Deep Graph Neural Networks

Guohao Li CS PhD Student @ KAUST guohao.li@kaust.edu.sa

Towards Structured Intelligence with Deep Graph Neural Networks



Making GCNs Go as Deep as CNNs:

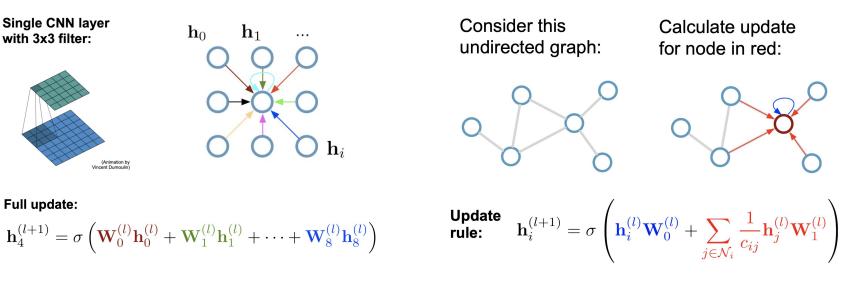
Message Aggregation Functions; Memory Efficiency

Ongoing Work and Research Plan:

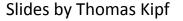
Structured Navigation; Research Plan

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

CNN vs. GNN - Comparison

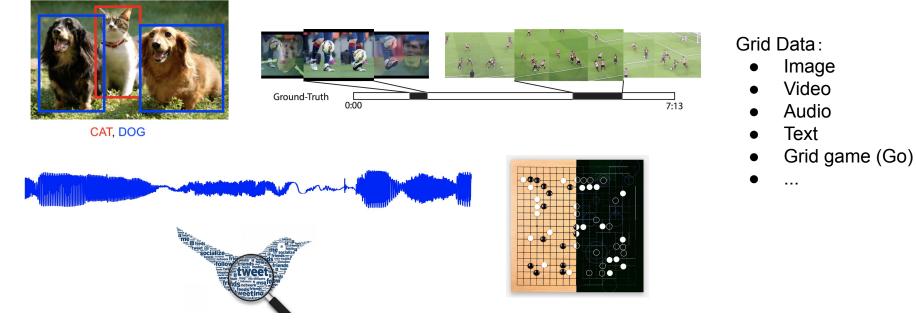


Convolutional Neural Network (CNN) Graph Convolutional Network (GCN)

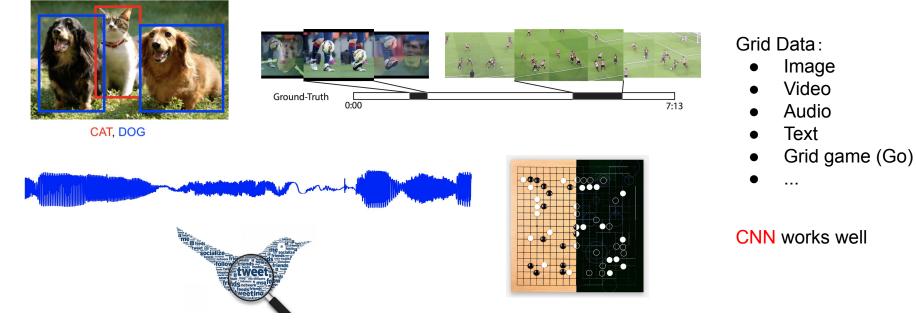


Why do we need graph neural networks?

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

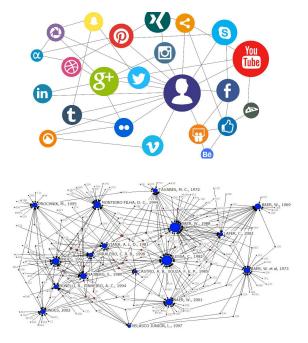


جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

How about non-grid graph structured data?

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

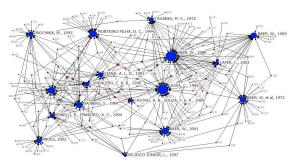
Lots of real-world applications need to deal with Non-Grid data



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology General Graphs:

- Social Networks
- Citation Networks

Lots of real-world applications need to deal with Non-Grid data



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Towards Structured Intelligence with Deep Graph Neural Networks

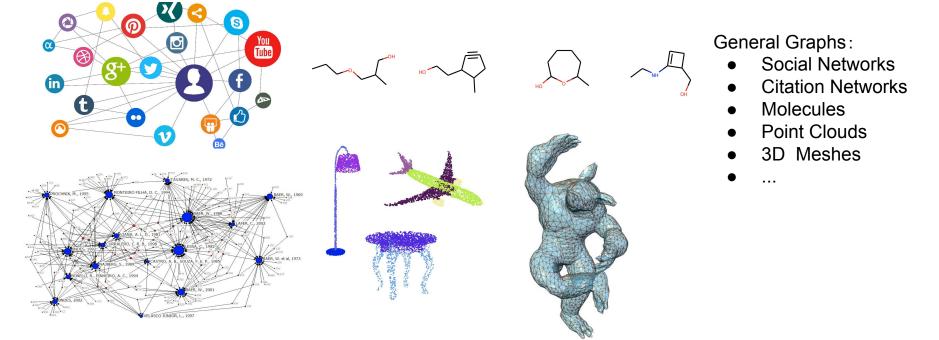
General Graphs:

Molecules

Social Networks

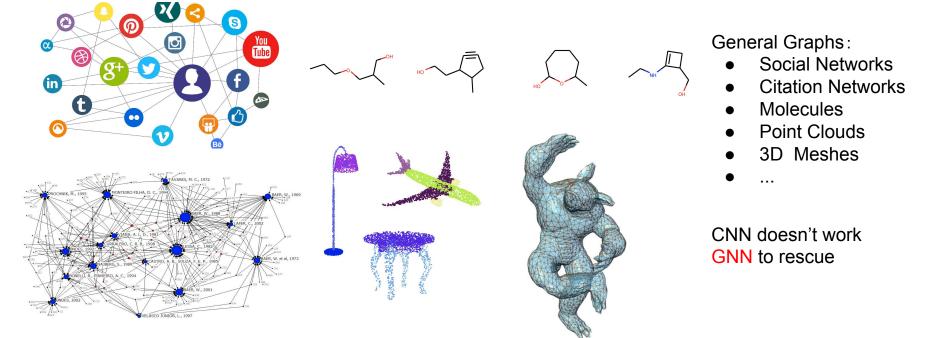
Citation Networks

Lots of real-world applications need to deal with Non-Grid data

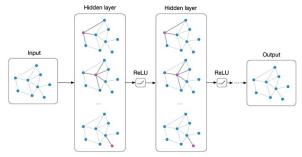


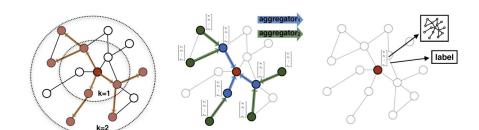
جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Lots of real-world applications need to deal with Non-Grid data



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

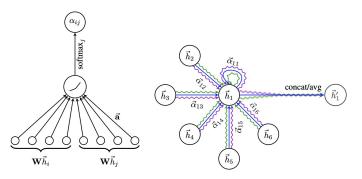


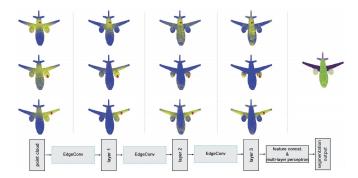


Kipf, T.N. and Welling, M., 2016. Semi-Supervised Classification with Graph Convolutional Networks.

Hamilton, W.L., Ying, R. and Leskovec, J., 2017. Inductive Representation Learning on Large Graphs.

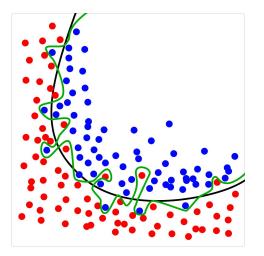
Most of SOTA GNNs are not deeper than 3 or 4 layers.



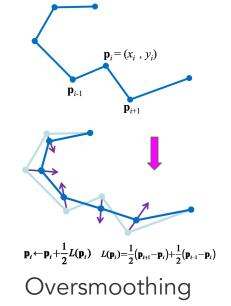


Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M. and Solomon, J.M., 2018. Dynamic Graph CNN for Learning on Point Clouds.

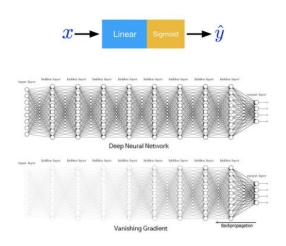
Why GNNs are limited to shallow architectures?



Overfitting



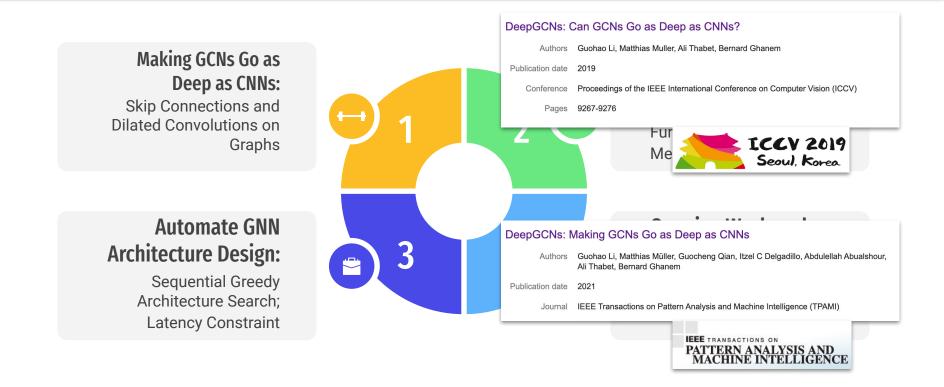
Figures from https://graphics.stanford.edu/courses/cs468-12-spring/ LectureSlides/06_smoothing.pdf



Vanishing Gradient

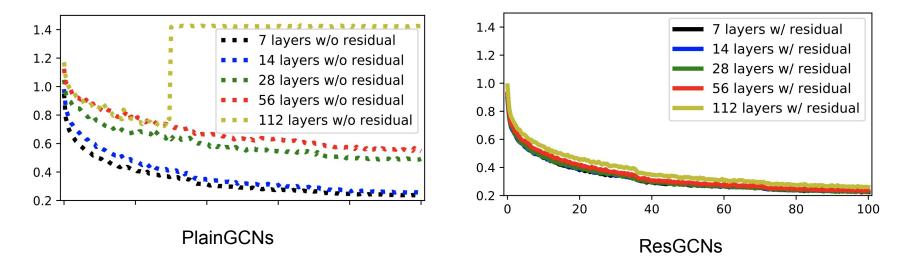
جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Towards Structured Intelligence with Deep Graph Neural Networks



Training Loss of GCNs with varying depth

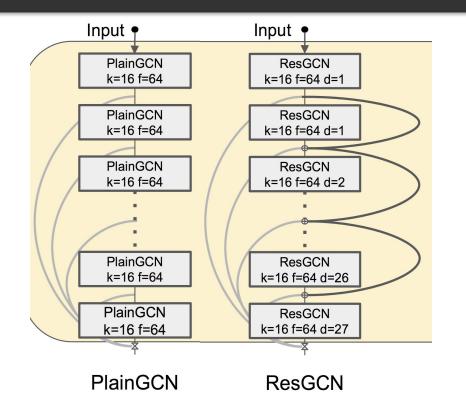
Deeper GCNs don't converge well.



Towards Structured Intelligence with Deep Graph Neural Networks

Even a 112-layer deep GCN converges well!!!

Residual Graph Connections



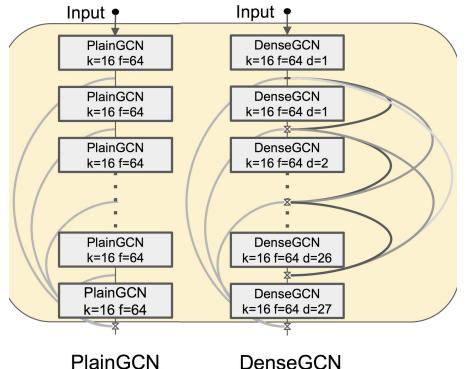
$$egin{aligned} \mathcal{G}_{l+1} &= \mathcal{H}(\mathcal{G}_l, \mathcal{W}_l) \ &= \mathcal{F}(\mathcal{G}_l, \mathcal{W}_l) + \mathcal{G}_l \end{aligned}$$

An example: ResMRGCN

$$\begin{split} h_{\mathcal{N}^{(d)}(v_l)}^{res} &= max \left(\{h_{u_l} - h_{v_l} | u_l \in \mathcal{N}^{(d)}(v_l) \} \right), \quad \text{Aggregate} \\ h_{v_{l+1}}^{res} &= mlp \left(concat \left(h_{v_l}, h_{\mathcal{N}^{(d)}(v_l)}^{res} \right) \right), \qquad \text{Update} \\ h_{v_{l+1}} &= h_{v_{l+1}}^{res} + h_{v_l}. \qquad \text{Skip connection} \end{split}$$

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Dense Graph Connections

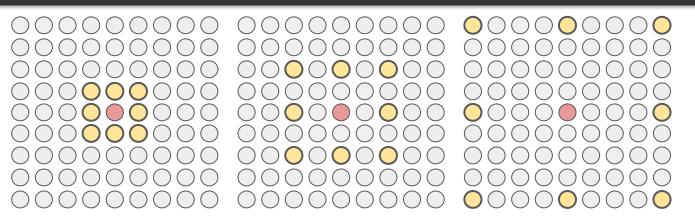


$$egin{aligned} \mathcal{G}_{l+1} &= \mathcal{H}(\mathcal{G}_l, \mathcal{W}_l) \ &= \mathcal{T}(\mathcal{F}(\mathcal{G}_l, \mathcal{W}_l), \mathcal{G}_l) \ &= \mathcal{T}(\mathcal{F}(\mathcal{G}_l, \mathcal{W}_l), ..., \mathcal{F}(\mathcal{G}_0, \mathcal{W}_0), \mathcal{G}_0). \end{aligned}$$

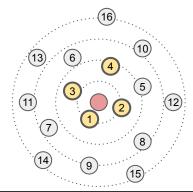
Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

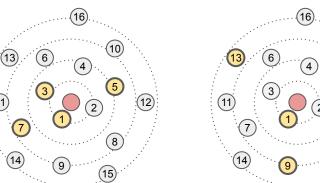
جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Dilated Graph Convolutions



Dilated Convolution on a regular graph, e.g. 2D image





Dilated graph Convolution on an irregular graph, e.g. 3D point cloud

Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." International Conference on Learning Representations. 2016.

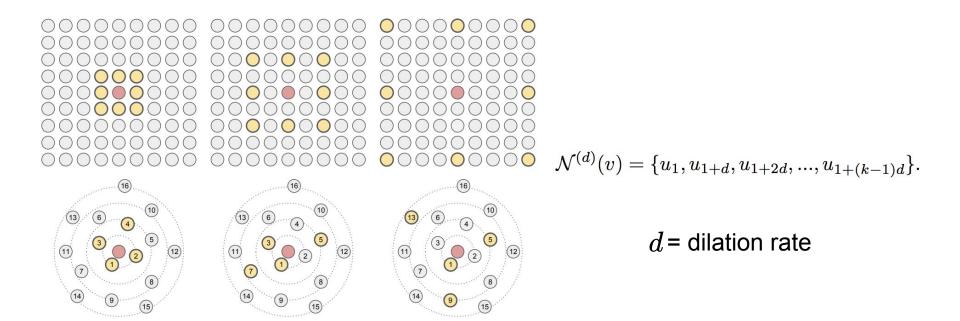
جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Towards Structured Intelligence with Deep Graph Neural Networks

8

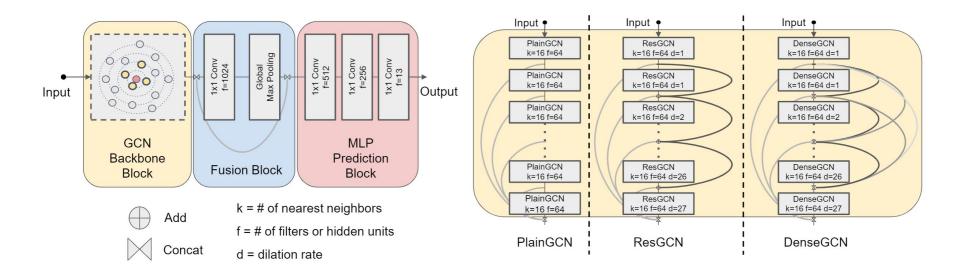
15)

Dilated Graph Convolutions



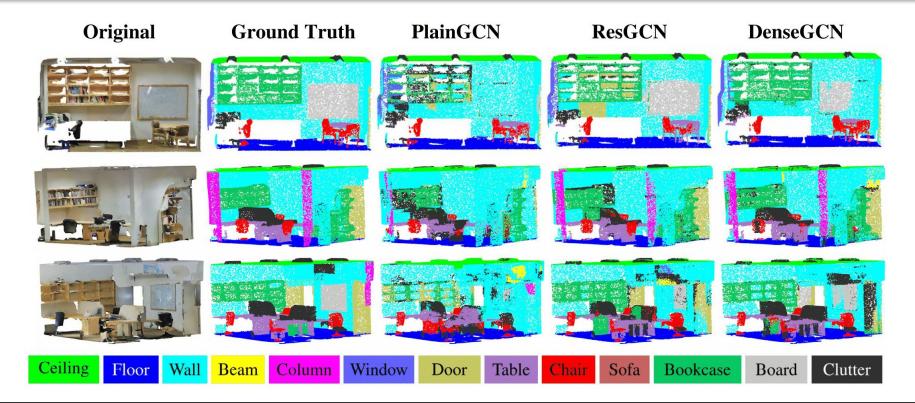
جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Deep Graph Convolutional Networks (DeepGCNs)



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Graph Learning on 3D Point Clouds



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

We outperform other SOTA in 9 out of 13 classes

Method	OA	mIOU	ceiling	floor	wall	beam	column	window	door	table	chair	sofa	bookcase	board	clutter
PointNet [29]	78.5	47.6	88.0	88.7	69.3	42.4	23.1	47.5	51.6	54.1	42.0	9.6	38.2	29.4	35.2
MS+CU [8]	79.2	47.8	88.6	95.8	67.3	36.9	24.9	48.6	52.3	51.9	45.1	10.6	36.8	24.7	37.5
G+RCU [8]	81.1	49.7	90.3	92.1	67.9	44.7	24.2	52.3	51.2	58.1	47.4	6.9	39.0	30.0	41.9
PointNet++ [31]	-	53.2	90.2	91.7	73.1	42.7	21.2	49.7	42.3	62.7	59.0	19.6	45.8	48.2	45.6
3DRNN+CF [51]	86.9	56.3	92.9	93.8	73.1	42.5	25.9	47.6	59.2	60.4	66.7	24.8	57.0	36.7	51.6
DGCNN [43]	84.1	56.1	-	_	_	-	_	_	-	_	-	-			2
ResGCN-28 (Ours)	85.9	60.0	93.1	95.3	78.2	33.9	37.4	56.1	68.2	64.9	61.0	34.6	51.5	51.1	54.4

Comparison of ResGCN-28 with state-of-the-art.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

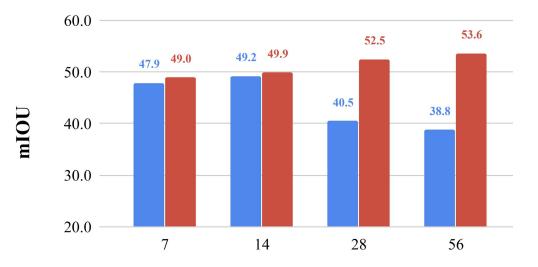
	Class	DGCNN [6]	ResGCN-28 (Ours)	
Consistent improvements across all the classes.	ceiling floor wall beam column window door table chair sofa bookcase board clutter	92.7 93.6 77.5 32.0 36.3 52.5 63.7 61.1 60.2 20.5 47.7 42.7 51.5	93.1 95.3 78.2 33.9 37.4 56.1 68.2 64.9 61.0 34.6 51.5 51.1 54.4	~ 4% boost in mIOU.
	mIOU	56.3	60.0	

Comparison of ResGCN-28 with DGCNN* (Our shallow baseline model).

* We reproduced the results of DGCNN on all classes since the results across all classes were not provided in the DGCNN paper.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

PlainGCN VS. ResGCN



PlainGCN ResGCN

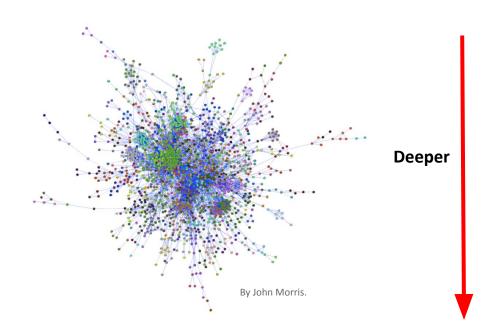
Number of layers

Model	Group Dis. Ratio	Instance Info. Gain	mIoU	
ResGCN-28	1.73	0.46	52.49	
w/o dilation	1.67	0.43	49.64	
w/o connection	1.12	0.01	40.47	

Analysis of over-smoothing using the Group Distance Ratio (intra group dist. / inter group dist.) and the Instance Information Gain (mutual information between input and final output).

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R. and Hu, X.. Towards deeper graph neural networks with differentiable group normalization. NeurIPS 2020.

Application in Biology



Wider Number of filters 32 64 128 256 PlainMRGCN-3 95.84 97.60 98.58 99.13 PlainMRGCN-7 97.35 98.69 99.22 99.38 PlainMRGCN-14 97.55 99.02 99.31 99.34 99.00 PlainMRGCN-28 98.09 99.02 99.31 PlainMRGCN-56 92.70 97.43 97.31 97.61 PlainMRGCN-112 60.75 71.97 89.69 91.50 99.09 ResMRGCN-3 96.04 97.60 98.53 97.00 98.43 99.19 99.30 ResMRGCN-7 ResMRGCN-14 97.75 98.88 99.26 99.38 99.16 99.29 ResMRGCN-28 98.50 99.41 ResMRGCN-56 98.62 99.27 99.36 99.40 ResMRGCN-112 98.41 99.34 99.38 99.39 DenseMRGCN-3 95.96 97.85 98.66 99.11 DenseMRGCN-7 97.87 98.47 99.31 99.36 DenseMRGCN-14 98.93 99.00 99.01 99.43 DenseMRGCN-28 99.16 99.29 99.42 DenseMRGCN-56 99.22

Node classification of biological networks.

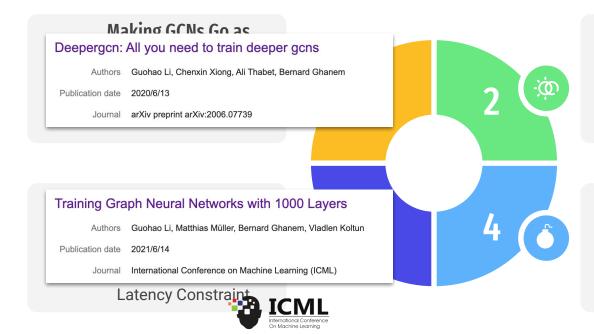
Application in Biology



Model	m-F1 score (%)
GraphSAGE [42]	61.20
GATConv [43]	97.30
VR-GCN [57]	97.80
GaAN [58]	98.71
GeniePath [59]	98.50
Cluster-GCN [56]	99.36
ResMRGCN-28 (Ours) DenseMRGCN-14 (Ours)	99.41 99.43

Comparison of DeepGCNs with state-of-the-art on PPI node classification.

Towards Structured Intelligence with Deep Graph Neural Networks



Making GCNs Go as Deep as CNNs:

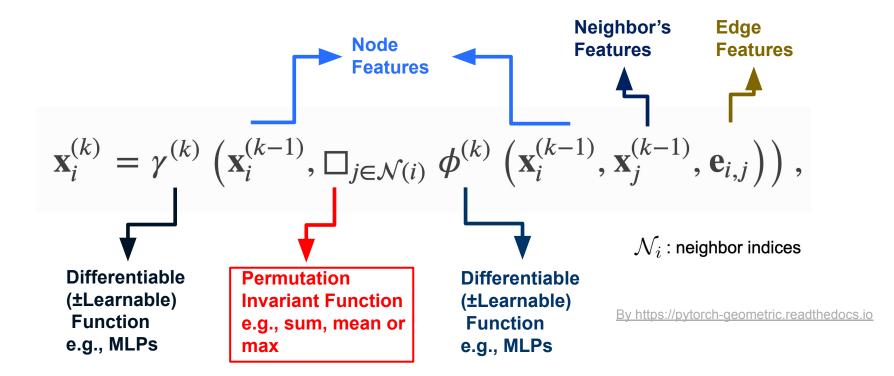
Message Aggregation Functions; Memory Efficiency

Ongoing Work and Research Plan:

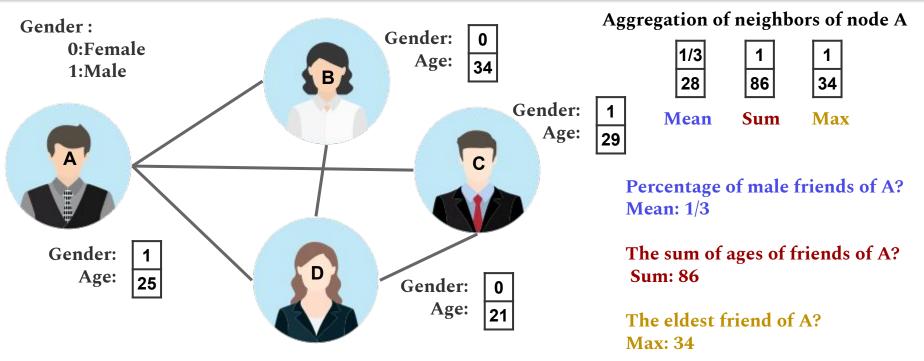
Structured Navigation; Research Plan

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Message Passing

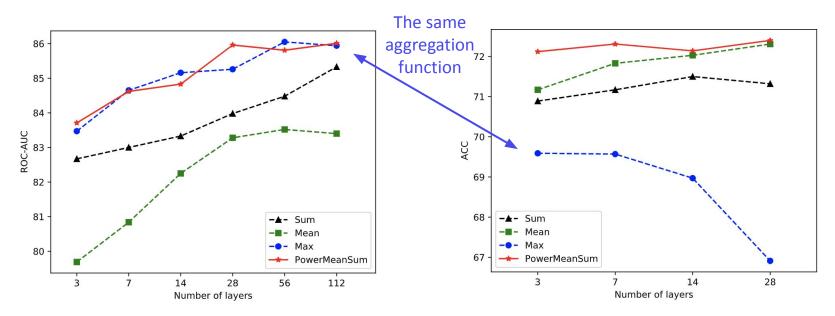


جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology



Different aggregations are good at capturing different properties of graphs.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology



(a) different aggregators on the obgn-protein dataset.

(b) different aggregations on the obgn-arxiv dataset.

Aggregation functions perform very differently on different datasets.

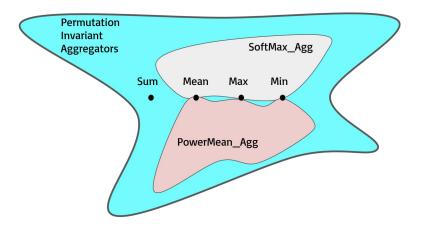


Illustration of Generalized Message Aggregation Functions.

Generalized mean-max aggregation function:

$$SoftMax_Agg_{\beta}(\cdot) = \sum_{u \in \mathcal{N}(v)} \frac{\exp(\beta \mathbf{m}_{vu})}{\sum_{i \in \mathcal{N}(v)} \exp(\beta \mathbf{m}_{vi})} \cdot \mathbf{m}_{vu}.$$

$$\lim_{\beta \to 0} \text{SoftMax}_A gg_{\beta}(\cdot) = \text{Mean}(\cdot)$$
$$\lim_{\beta \to \infty} \text{SoftMax}_A gg_{\beta}(\cdot) = \text{Max}(\cdot)$$

$$PowerMean_Agg_p(\cdot) = \left(\frac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} \mathbf{m}_{vu}^p\right)^{1/p}.$$

PowerMean_Agg_{p=1}(·) = Mean(·)
$$\lim_{p\to\infty}$$
PowerMean_Agg_p(·) = Max(·)

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

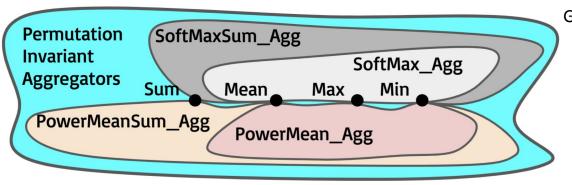


Illustration of Generalized Message Aggregation Functions.

Generalized mean-max aggregation function: $SoftMax_Agg_{\beta}(\cdot) = \sum_{u \in \mathcal{N}(v)} \frac{\exp(\beta \mathbf{m}_{vu})}{\sum_{i \in \mathcal{N}(v)} \exp(\beta \mathbf{m}_{vi})} \cdot \mathbf{m}_{vu}.$

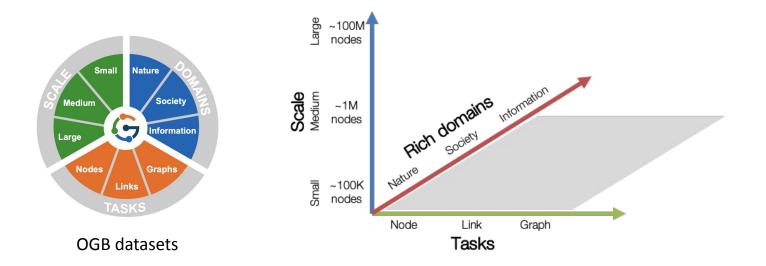
$$PowerMean_Agg_p(\cdot) = \left(\frac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} \mathbf{m}_{vu}^p\right)^{1/p}.$$

Generalized mean-max-sum aggregation function:

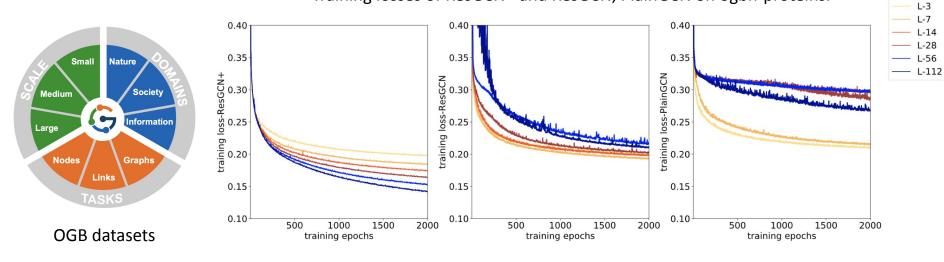
 $|\mathcal{N}(v)|^{y} \cdot \zeta_{x}(\cdot)$

Differentiable aggregation functions

Datasets: Open Graph Benchmark (OGB)



DeeperGCN - Residual Connections



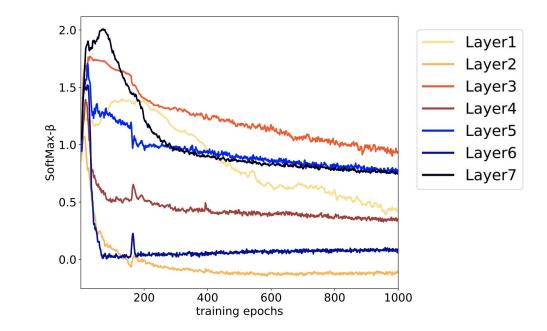
Training losses of ResGCN+ and ResGCN, PlainGCN on ogbn-proteins.

Preactivated residual connections work better.

ogbn-proteins	GraphSAGE 77.68 ± 0.20	GCN 72.51 ± 0.35	GaAN 78.03 ± 0.73				Ours 86.16 ± 0.16
ogbn-arxiv	GraphSAGE 71.49 ± 0.27	GCN 71.74 ± 0.29	GaAN 71.97 ± 0.24	GCNII 72.74 ± 0.16	JKNet 72.19 ± 0.21	DAGNN 72.09 ± 0.25	72.32 ± 0.27
ogbn-products	GraphSAGE 78.29 ± 0.16	GCN 75.64 ± 0.21	ClusterGCN 78.97 ± 0.33	GraphSAINT 80.27 ± 0.26	GAT 79.45 ± 0.59		81.64 ± 0.30
	GIN	GCN	GIN*	GCN*	HIMP		
ogbg-molhiv	75.58 ± 1.40	76.06 ± 0.97	77.07 ± 1.49	75.99 ± 1.19	78.80 ± 0.82		78.87 ± 1.24
ogbg-molpcba	22.66 ± 0.28	20.20 ± 0.24	27.03 ± 0.23	24.24 ± 0.34			$27.81 \pm 0.38^{*}$
ogbg-ppa	68.92 ± 1.00	68.39 ± 0.84	70.37 ± 1.07	68.57 ± 0.61			77.12 ± 0.71
	GraphSAGE	GCN	DeepWalk				
ogbl-collab	48.10 ± 0.81	44.75 ± 1.07	50.37 ± 0.34				52.73 ± 0.47

DeeperGCN achieves SOTA results on 6 OGB datasets.

Results



Learning curves of 7-layer DyResGEN with SoftMax_Agg(\cdot).

Results

Leaderboard for ogbg-ppa

The multi-class classification accuracy on the test and validation sets. The higher, the better. Package: >=1.1.1

Rank	Method	Test Accuracy	Validation Accuracy	Contact	References	#Params	Hardware	Date
1	DeeperGCN	0.7712 ± 0.0071	0.7313 ± 0.0078	Guohao Li - DeepGCNs.org	Paper, Code	2,336,421	NVIDIA Tesla V100 (32GB GPU)	Jun 16, 2020
2	GIN+virtual node	0.7037 ± 0.0107	0.6678 ± 0.0105	Weihua Hu - OGB team	Paper, Code	3,288,042	GeForce RTX 2080 (11GB GPU)	May 1, 2020
з	GIN	0.6892 ± 0.0100	0.6562 ± 0.0107	Weihua Hu - OGB team	Paper, Code	1,836,942	GeForce RTX 2080 (11GB GPU)	May 1, 2020
4	GCN+virtual node	0.6857 ± 0.0061	0.6511 ± 0.0048	Weihua Hu - OGB team	Paper, Code	1,930,537	GeForce RTX 2080 (11GB GPU)	May 1, 2020
5	GCN	0.6839 ± 0.0084	0.6497 ± 0.0034	Weihua Hu – OGB team	Paper, Code	479,437	GeForce RTX 2080 (11GB GPU)	May 1, 2020

~7%

Leaderboard for ogbg-molpcba

The Average Precision (AP) score on the test and validation sets. The higher, the better.

Note: The evaluation metric has been changed from PRC-AUC (Aug 11, 2020).

Package: >=1.2.2

Rank	Method	Test AP	Validation AP	Contact	References	#Params	Hardware	Date
1	DeeperGCN+virtual node	0.2781 ± 0.0038	0.2920 ± 0.0025	Guohao Li - DeepGCNs.org	Paper, Code	5,550,208	NVIDIA Tesla V100 (32GB GPU)	Aug 11, 2020
2	GIN+virtual node	0.2703 ± 0.0023	0.2798 ± 0.0025	Weihua Hu - OGB team	Paper, Code	3,374,533	GeForce RTX 2080 (11GB GPU)	Aug 11, 2020
3	GCN+virtual node	0.2424 ± 0.0034	0.2495 ± 0.0042	Weihua Hu - OGB team	Paper, Code	2,017,028	GeForce RTX 2080 (11GB GPU)	Aug 11, 2020
4	GIN	0.2266 ± 0.0028	0.2305 ± 0.0027	Weihua Hu – OGB team	Paper, Code	1,923,433	GeForce RTX 2080 (11GB GPU)	Aug 11, 2020
5	GCN	0.2020 ± 0.0024	0.2059 ± 0.0033	Weihua Hu – OGB team	Paper, Code	565,928	GeForce RTX 2080 (11GB GPU)	Aug 11, 2020

Leaderboard for ogbn-proteins

~7.5%

The ROC-AUC score on the test set. The higher, the better.

Rank	Method	ROC-AUC	Contact	References	Date
1	DeeperGCN	0.8580 ± 0.0017	Guohao Li - DeepGCNs.org	Paper, Code	Jun 16, 2020
2	GeniePath-BS	0.7825 ± 0.0035	Zhengwei WU (AGL Team)	Paper, Code	Jun 10, 2020
3	GaAN	0.7803 ± 0.0073	Wenjin Wang (PGL Team)	Paper, Code	May 26, 2020
4	GraphSAGE	0.7768 ± 0.0020	Matthias Fey - OGB team	Paper, Code	May 1, 2020
5	MLP	0.7204 ± 0.0048	Matthias Fey - OGB team	Paper, Code	May 1, 2020
6	Node2vec	0.6881 ± 0.0065	Matthias Fey - OGB team	Paper, Code	May 1, 2020
7	GCN	0.6511 ± 0.0152	Matthias Fey - OGB team	Paper, Code	May 1, 2020

DeeperGCN ranked top 1 on several datasets at the time of submission.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Memory complexity of training GNNs

Full batch: O(LND)	Mini-batch:	
L - number of layers N - number of nodes	Cluster-GCN: O(LND) - > O(LBD)	This work:
D - number of features (assume D is the same	B - number of nodes in subgraphs, B <n< td=""><td>O(LND) - > O(ND)</td></n<>	O(LND) - > O(ND)
for all the layers)		

- How can we reduce memory complexity?

- Can we reduce the memory complexity in the L dimension?

Chiang, Wei-Lin, et al. "Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks." SIGKDD. 2019.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Related Work

The Reversible Residual Network: Backpropagation Without Storing Activations

Aidan N. Gomez^{*1}, Mengye Ren^{*1,2,3}, Raquel Urtasun^{1,2,3}, Roger B. Grosse^{1,2} University of Toronto¹ Vector Institute for Artificial Intelligence² Uber Advanced Technologies Group³ {aidan, mren, urtasun, rgrosse}@cs.toronto.edu

Deep Equilibrium Models

Shaojie Bai Carnegie Mellon University J. Zico Kolter Carnegie Mellon University Bosch Center for AI Vladlen Koltun Intel Labs

DNN: **O(L)**

Reversible CNN / DEQ: O(1)

*only consider the L dimension

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Memory Efficient GNNs

$$\langle X_1, X_2, ..., X_C \rangle \mapsto \langle X'_1, X'_2, ..., X'_C \rangle$$

Reversible GNN:

Forward:

$$X_0' = \sum_{i=2}^C X_i$$

 $X_i' = f_{w_i}(X_{i-1}', A, U) + X_i, \ i \in \{1, \cdots, C\}$

Inverse:

$$\begin{aligned} X_i &= X_i' - f_{w_i}(X_{i-1}', A, U), \ i \in \{2, \cdots, C\} \\ X_0' &= \sum_{i=2}^C X_i \\ X_1 &= X_1' - f_{w_1}(X_0', A, U). \end{aligned}$$

Weight-tied Reversible GNN:

$$f_{w_i}^{(1)} := f_{w_i}^{(2)} \dots := f_{w_i}^{(L)}, \ i \in \{1, \cdots, C\}$$

DEQ-GNN:

٠,

$$Z^* = f_w^{\mathrm{DEQ}}(Z^*, X, A, U),$$

Do not need to store the intermediate node features.

O(LND) - > O(ND)

Memory Efficient GNNs

$$\langle X_1, X_2, ..., X_C \rangle \mapsto \langle X'_1, X'_2, ..., X'_C \rangle$$
Reversible GNN:

Forward:
$$\begin{aligned} X'_0 &= \sum_{i=2}^C X_i \\ X'_0 &= f_{w_i}(X'_{i-1}, A, U) + X_i, \ i \in \{1, \cdots, C\}, \end{aligned}$$
Inverse:
$$\begin{aligned} X_i &= X'_i - f_{w_i}(X'_{i-1}, A, U), \ i \in \{2, \cdots, C\} \\ X'_0 &= \sum_{i=2}^C X_i \\ X'_0 &= \sum_{i=2}^C X_i \\ X_1 &= X'_1 - f_{w_1}(X'_0, A, U). \end{aligned}$$

When #group =2: $\langle X_1, X_2 \rangle \mapsto \langle X_1', X_2' \rangle$

Forward:

$$X'_{0} = X_{2}$$

$$X'_{1} = f_{w_{1}}(X'_{0}, A, U) + X_{1}$$

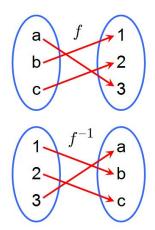
$$X'_{2} = f_{w_{2}}(X'_{1}, A, U) + X_{2}$$

Inverse:

$$X_{2} = X'_{2} - f_{w_{2}}(X'_{1}, A, U)$$

$$X'_{0} = X_{2}$$

$$X_{1} = X'_{1} - f_{w_{1}}(X'_{0}, A, U).$$



Memory Efficient GNNs

DEQ-GNN:

 $Z^* = f_w^{\mathsf{DEQ}}(Z^*, X, A, U),$

Forward: Fixed Point Iteration

Backward: Implicit Differentiation

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

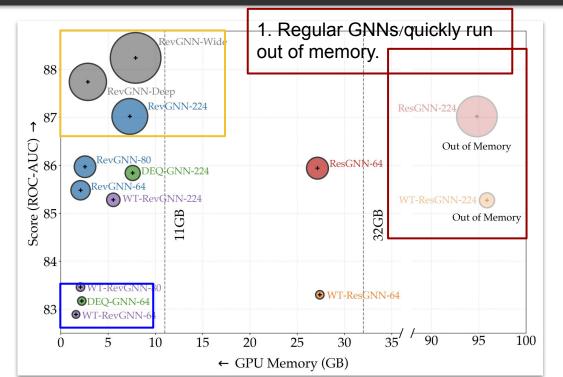
DEQ-GNN:
$$Z^* = f_w^{\text{DEQ}}(Z^*, X, A, U),$$

$$\frac{\partial \ell}{\partial (\cdot)} = -\frac{\partial \ell}{\partial \mathbf{z}_{1:T}^{\star}} \big(J_{g_{\theta}}^{-1} \big|_{\mathbf{z}_{1:T}^{\star}} \big) \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial (\cdot)} = -\frac{\partial \ell}{\partial h} \frac{\partial h}{\partial \mathbf{z}_{1:T}^{\star}} \big(J_{g_{\theta}}^{-1} \big|_{\mathbf{z}_{1:T}^{\star}} \big) \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial (\cdot)},$$

Results - Summary

2. We can train huge overparameterized RevGNNs on a single GPU and achieve the best performance.

3. We can train smaller GNNs with weight-tying or DEQ and still reach promising results



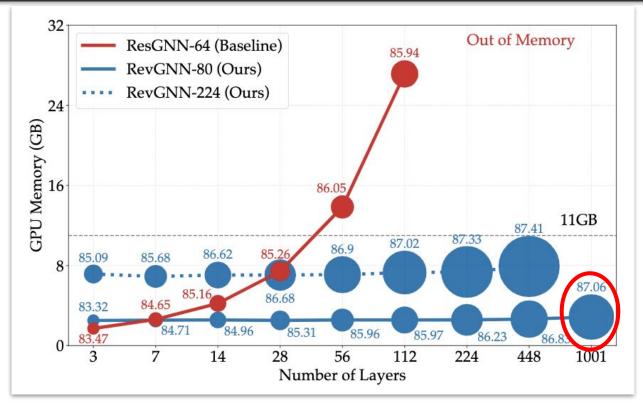
Performance v.s. GPU memory consumption on the ogbn-proteins dataset for 112 layer deep networks.

Results - Complexity Analysis

Method	Memory	Params	Time
Full-batch GNN	$\mathcal{O}(LND)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(L \ A\ _0 D + LND^2)$
GraphSAGE	$\mathcal{O}(R^L BD)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(R^L N D^2)$
VR-GCN	$\mathcal{O}(LND)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(L \left\ A \right\ _0 D + LND^2 + R^L ND^2)$
FastGCN	$\mathcal{O}(LRBD)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(RLND^2)$
Cluster-GCN	$\mathcal{O}(LBD)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(L \left\ A\right\ _0 D + LND^2)$
GraphSAINT	$\mathcal{O}(LBD)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(L \left\ A\right\ _0 D + LND^2)$
Weight-tied GNN	$\mathcal{O}(LND)$	$\mathcal{O}(D^2)$	$\mathcal{O}(L \left\ A \right\ _0 D + LND^2)$
RevGNN	$\mathcal{O}(ND)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(L \left\ A \right\ _0 D + LND^2)$
WT-RevGNN	$\mathcal{O}(ND)$	$\mathcal{O}(D^2)$	$\mathcal{O}(L \left\ A\right\ _0 D + LND^2)$
DEQ-GNN	$\mathcal{O}(ND)$	$\mathcal{O}(D^2)$	$\mathcal{O}(K \left\ A \right\ _0 D + KND^2)$
RevGNN + Subgraph Sampling	$\mathcal{O}(BD)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(L \left\ A \right\ _0 D + LND^2)$
WT-RevGNN + Subgraph Sampling	$\mathcal{O}(BD)$	$\mathcal{O}(D^2)$	$\mathcal{O}(L \ A\ _0 D + LND^2)$
DEQ-GNN + Subgraph Sampling	$\mathcal{O}(BD)$	$\mathcal{O}(D^2)$	$\mathcal{O}(K \ A\ _0 D + KND^2)$

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Results - Constant Memory with RevGNN



Train 1001-layer GNN with only 2.86G peak GPU memory!

The deepest GNN by one order of magnitude.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Results - SOTA with RevGNN (ogbn-proteins)

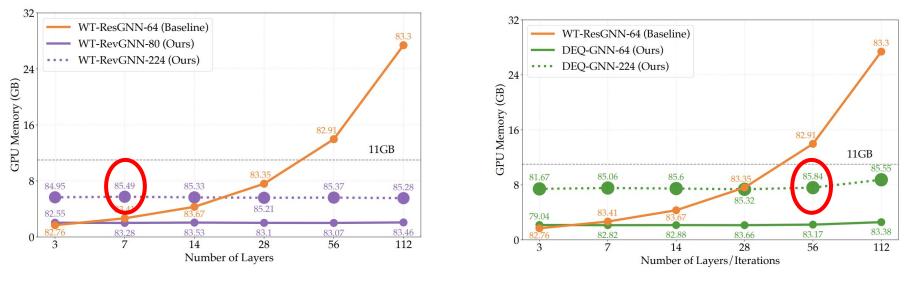
Rank	Method	Test ROC- AUC	Validation ROC- AUC	Contact	References	#Params	Hardware	Date
1	RevGNN-Wide	0.8824 ± 0.0015	0.9450 ± 0.0008	Guohao Li - DeepGCNs.org	Paper, Code	68,471,608	NVIDIA RTX 6000 (48G)	Jun 16, 2021
2	RevGNN-Deep	0.8774 ± 0.0013	0.9326 ± 0.0006	Guohao Li - DeepGCNs.org	Paper, Code	20,031,384	NVIDIA RTX 6000 (48G)	Jun 16, 2021
3	GAT+BoT	0.8765 ± 0.0008	0.9280 ± 0.0008	Yangkun Wang (DGL Team)	Paper, Code	2,484,192	Tesla A100 (40GB GPU)	Jun 16, 2021
4	GAT + labels + node2vec	0.8711 ± 0.0007	0.9217 ± 0.0011	Huixuan Chi	Paper, Code	6,360,470	Tesla V100 (32GB)	Jun 7, 2021
5	GIPA	0.8700 ± 0.0010	0.9187 ± 0.0003	Qinkai Zheng (GeaLearn Team)	Paper, Code	4,831,056	GeForce Titan RTX (24GB GPU)	May 13, 2021
6	UniMP+CrossEdgeFeat	0.8691 ± 0.0018	0.9258 ± 0.0009	Yelrose (PGL Team)	Paper, Code	1,959,984	Tesla V100 (32GB)	Nov 24, 2020
7	GAT+EdgeFeatureAtt	0.8682 ± 0.0021	0.9194 ± 0.0003	Yangkun Wang (DGL Team)	Paper, Code	2,475,232	p3.8xlarge (15GB GPU)	Nov 6, 2020
8	UniMP	0.8642 ± 0.0008	0.9175 ± 0.0006	Yunsheng Shi (PGL team)	Paper, Code	1,909,104	Tesla V100 (32GB)	Sep 8, 2020
9	DeeperGCN+FLAG	0.8596 ± 0.0027	0.9132 ± 0.0022	Kezhi Kong	Paper, Code	2,374,568	GeForce RTX 2080 Ti (11GB GPU)	Oct 20, 2020

68M parameters (about a half of GPT)

Results - SOTA with RevGNN (ogbn-arxiv)

Rank	Method	Test Accuracy	Validation Accuracy	Contact	References	#Params	Hardware	Date
1	RevGAT+N.Adj+LabelReuse+SelfKD	0.7426 ± 0.0017	0.7497 ± 0.0008	Guohao Li - DeepGCNs.org	Paper, Code	2,098,256	NVIDIA Tesla V100 (32GB GPU)	Jun 21, 2021
2	GAT+label reuse+self KD	0.7416 ± 0.0008	0.7514 ± 0.0004	Shunli Ren(CMIC@SJTU)	Paper, Code	1,441,580	GeForce RTX 1080Ti (11GB GPU)	Dec 15, 2020
3	RevGAT+NormAdj+LabelReuse	0.7402 ± 0.0018	0.7501 ± 0.0010	Guohao Li - DeepGCNs.org	Paper, Code	2,098,256	NVIDIA Tesla V100 (32GB GPU)	Jun 21, 2021
4	GAT+label+reuse+topo loss	0.7399 ± 0.0012	0.7513 ± 0.0009	Mengyang Niu (DAMO DI)	Paper, Code	1,441,580	Tesla V100 (16GB)	Dec 10, 2020
5	AGDN (GAT-HA+3_heads+labels)	0.7398 ± 0.0009	0.7519 ± 0.0009	Chuxiong Sun	Paper, Code	1,508,555	Tesla V100 (32GB GPU)	Jan 3, 2021
6	UniMP_v2	0.7397 ± 0.0015	0.7506 ± 0.0009	Weiyue Su (PGL Team)	Paper, Code	687,377	Tesla V100 (32GB)	Nov 24, 2020
7	GAT(norm.adj.)+label reuse+C&S	0.7395 ± 0.0012	0.7519 ± 0.0008	Yangkun Wang (DGL Team)	Paper, Code	1,441,580	p3.8xlarge (15GB GPU)	Nov 24, 2020
8	GAT+norm. adj.+label reuse	0.7391 ± 0.0012	0.7516 ± 0.0008	Yangkun Wang (DGL Team)	Paper, Code	1,441,580	p3.8xlarge (15GB GPU)	Nov 11, 2020
9	GAT + C&S	0.7386 ± 0.0014	0.7484 ± 0.0007	Horace He (Cornell)	Paper, Code	1,567,000	GeForce RTX 2080 (11GB GPU)	Oct 27, 2020

Results - Constant Memory and Parameter Complexities



WT-RevGNN.

DEQ-RevGNN.

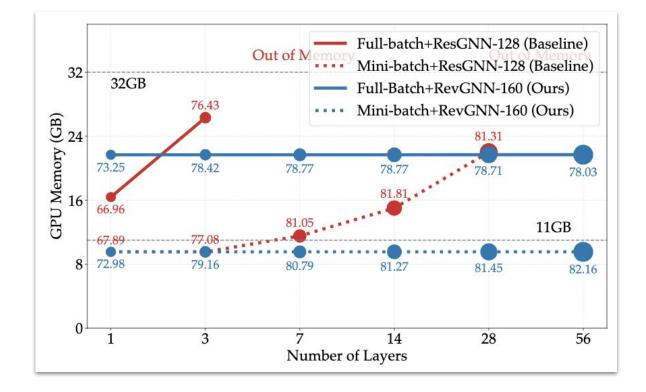
جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Ablation - Different GNN operators (ogbn-arxiv)

Model	#L	#Ch	ACC \uparrow	$\text{Mem}\downarrow$	Params
ResGCN	28	128	72.46 ± 0.29	11.15	491k
RevGCN	28	128	$\textbf{73.01} \pm 0.31$	1.84	262k
RevGCN	28	180	73.22 ± 0.19	2.73	500k
ResSAGE	28	128	72.46 ± 0.29	8.93	950k
RevSAGE	28	128	$\textbf{72.69} \pm 0.23$	1.17	491k
RevSAGE	28	180	72.73 ± 0.10	1.57	953k
ResGEN	28	128	$\textbf{72.32} \pm 0.27$	21.63	491k
RevGEN	28	128	$\textbf{72.34} \pm 0.18$	4.08	262k
RevGEN	28	180	$\textbf{72.93} \pm 0.10$	5.67	500k
ResGAT	5	768	73.76 ± 0.13	9.96	3.87M
RevGAT	5	768	74.02 ± 0.18	6.30	2.10M
RevGAT	5	1068	74.05 ± 0.11	8.49	3.88M

RevGNNs are generic and can be applied to different operators.

Ablation - Mini-batch Training (ogbn-products)



Mini-batch training further reduces the memory consumption of RevGNN and improves its accuracy.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

GNN1000 is on State of AI Report 2021

State of AI Report 2021

The **State of AI Report** analyses the most interesting developments in AI. We aim to trigger an informed conversation about the state of AI and its implication for the future. The Report is produced by AI investors **Nathan Benaich** and **Ian Hogarth**.

Introduction | Research | Talent | Industry | Politics | Predictions

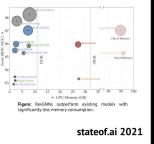
#stateofai | 67

Graph Neural Networks: improving the memory and parameter efficiency of large models

While very expressive and powerful, GNN model size doesn't scale well alongside dataset size due to the complexity of modelling millions of nodes and billions of connections. This is problematic for real-world problems when deploying large GNNs for equally large graph datasets without sacrificing model parameters.

- To overcome the memory bottleneck of large GNNs, we either need new hardware or model architectures that consume less memory.
- A method called deep reversible architectures (RevGNN) offers memory consumption that is independent of the number of layers in a model. RevGNN has a very large capacity at low memory cost and only slightly increased training time compared to baseline GNNs (ResGNN). Their deepest model, RevGNN-Wide, is the deepest GNN to date with 1000 layers.
- With only a fraction of the memory footprint, RevGNNs outperform some baselines on a node prediction benchmark task. But depth still doesn't help in most tasks, which is worthy of future investigation.

< 67 > :



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

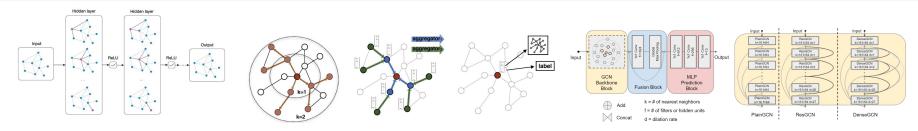
Towards Structured Intelligence with Deep Graph Neural Networks

Google Slides

Towards Structured Intelligence with Deep Graph Neural Networks

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

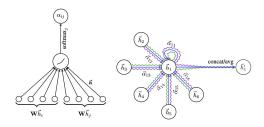
Automate GNN Architecture Design



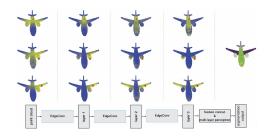
Li, G., Müller, M., Thabet, A. and Ghanem, B., 2019. DeepGCNs: Can GCNs Go as Deep as CNNs?

Kipf, T.N. and Welling, M., 2016. Semi-Supervised Classification with Graph Convolutional Networks.

Hamilton, W.L., Ying, R. and Leskovec, J., 2017. Inductive Representation Learning on Large Graphs.



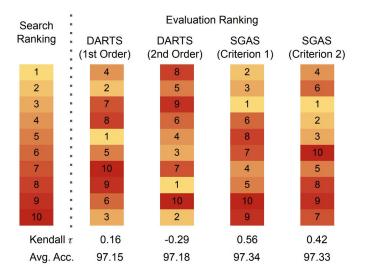
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. and Bengio, Y., 2018. Graph Attention Networks.



Designing GNNs is Painful!

A Smarter Way?

Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M. and Solomon, J.M., 2018. Dynamic Graph CNN for Learning on Point Clouds.



Comparison of search-evaluation Kendall coefficients.

Architectures with a higher validation accuracy during the search phase may perform worse in the evaluation (see Figure 1).

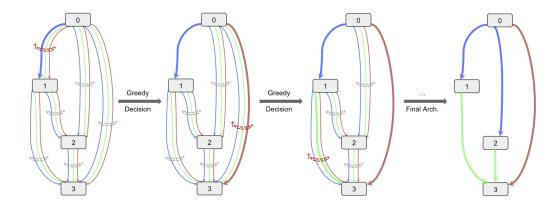


Illustration of Sequential Greedy Architecture Search.

Aiming to alleviate this common issue, we introduce sequential greedy architecture search (SGAS), an efficient method for neural architecture search.

By dividing the search procedure into sub-problems, SGAS chooses and prunes candidate operations in a greedy fashion.

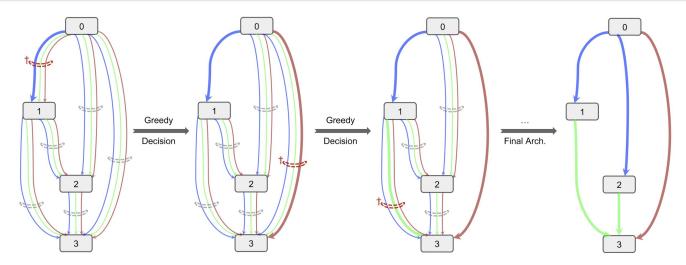


Illustration of Sequential Greedy Architecture Search.

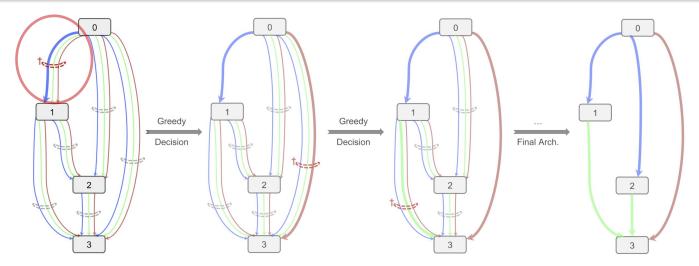


Illustration of Sequential Greedy Architecture Search.

1 If a decision epoch, select an edge $(i^{\dagger}, j^{\dagger})$ based on the greedy Selection Criterion

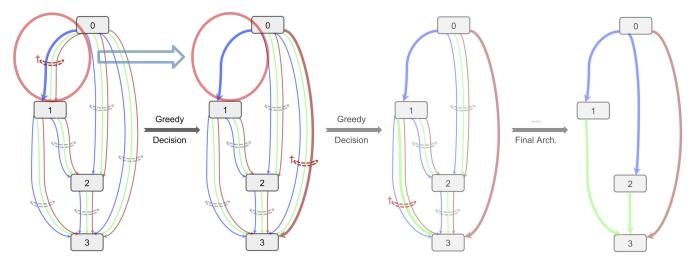


Illustration of Sequential Greedy Architecture Search.
 If a decision epoch, select an edge (i[†], j[†]) based on the greedy Selection Criterion
 Determine the operation by replacing ō^(i[†], j[†]) with o^(i[†], j[†]) = argmax_{o∈O} α^(i[†], j[†])_o

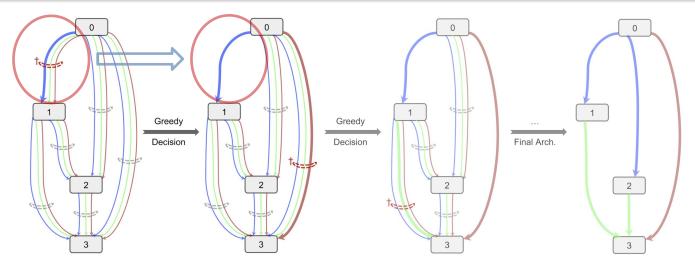


Illustration of Sequential Greedy Architecture Search. (1) If a decision epoch, select an edge $(i^{\dagger}, j^{\dagger})$ based on the greedy *Selection Criterion* (2) Determine the operation by replacing $\bar{o}^{(i^{\dagger}, j^{\dagger})}$ with $o^{(i^{\dagger}, j^{\dagger})} = \operatorname{argmax}_{o \in \mathcal{O}} \alpha_o^{(i^{\dagger}, j^{\dagger})}$ (3) Prune unchosen weights from \mathcal{W} , Remove $\alpha^{(i^{\dagger}, j^{\dagger})}$ from \mathcal{A}

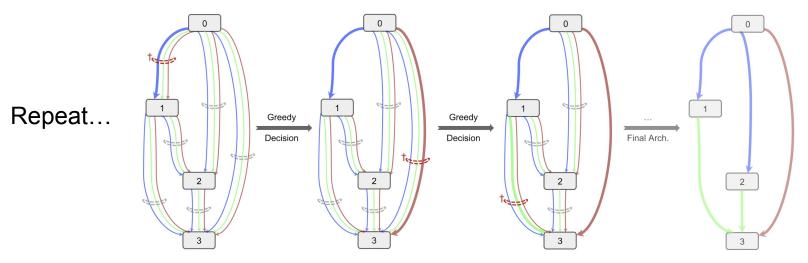


Illustration of Sequential Greedy Architecture Search.

If a decision epoch, select an edge (i[†], j[†]) based on the greedy Selection Criterion
 Determine the operation by replacing ō^(i[†], j[†]) with o^(i[†], j[†]) = argmax_{o∈O} α^(i[†], j[†])_{o∈O}
 Prune unchosen weights from W, Remove α^(i[†], j[†]) from A

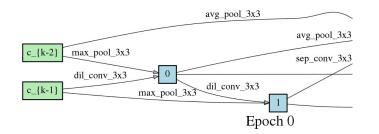
SGAS - Selection Criteria

Edge Importance:

To maintain the optimality, the design of the selection criterion is crucial.



Selection Certainty:



$$p_o^{(i,j)} = \frac{\exp(\alpha_o^{(i,j)})}{S_{EI}^{(i,j)} \sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})}, o \in \mathcal{O}, o \neq zero$$
$$S_{SC}^{(i,j)} = 1 - \frac{-\sum_{o \in \mathcal{O}, o \neq zero} p_o^{(i,j)} \log(p_o^{(i,j)})}{\log(|\mathcal{O}| - 1)}$$

Selection Stability:

$$S_{SS}^{(i,j)} = \frac{1}{K} \sum_{t=T-K}^{T-1} \sum_{o_t \in \mathcal{O}o_t, \neq zero} \min(p_{o_t}^{(i,j)}, p_{o_T}^{(i,j)})$$

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

SGAS - Selection Criteria

Criterion 1:

$$S_1^{(i,j)} = \text{normalize}(S_{EI}^{(i,j)}) * \text{normalize}(S_{SC}^{(i,j)})$$

Edge Importance:

S

$$_{EI}^{(i,j)} = \sum_{o \in \mathcal{O}, o \neq zero} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})}$$

Criterion 2:

$$S_2^{(i,j)} = S_1^{(i,j)} * \operatorname{normalize}(S_{SS}^{(i,j)})$$

$$p_{o}^{(i,j)} = \frac{\exp(\alpha_{o}^{(i,j)})}{S_{EI}^{(i,j)} \sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})}, o \in \mathcal{O}, o \neq zero$$

$$S_{SC}^{(i,j)} = 1 - \frac{-\sum_{o \in \mathcal{O}, o \neq zero} p_{o}^{(i,j)} \log(p_{o}^{(i,j)})}{\log(|\mathcal{O}| - 1)}$$

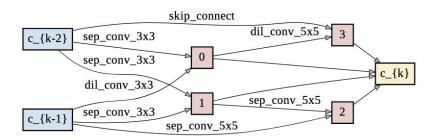
 $normalize(\cdot)$: a standard Min-Max scaling normalization

Selection Stability:

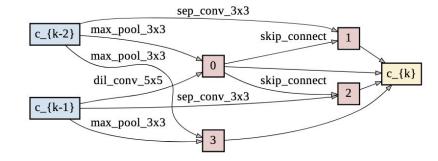
$$S_{SS}^{(i,j)} = \frac{1}{K} \sum_{t=T-K}^{T-1} \sum_{o_t \in \mathcal{O}o_t, \neq zero} \min(p_{o_t}^{(i,j)}, p_{o_T}^{(i,j)})$$

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Results – SGAS for CNN on CIFAR-10

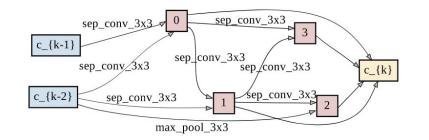


(a) Normal cell of the best model with SGAS (Cri. 1) on CIFAR-10



(b) Reduction cell of the best model with SGAS (Cri. 1) on CIFAR-10

max_pool_3x3



 max_pool_3x3

 c_{k-2}

 sep_conv_3x3

 dil_conv_3x3

 0

 sep_conv_5x5

 3

 max_pool_3x3

 c_{k-1}

 max_pool_3x3

 1

(c) Normal cell of the best model with SGAS (Cri. 2) on CIFAR-10

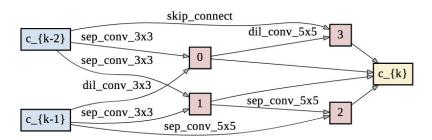
(d) Reduction cell of the best model with SGAS (Cri. 2) on CIFAR-10

Results – SGAS for CNN on CIFAR-10

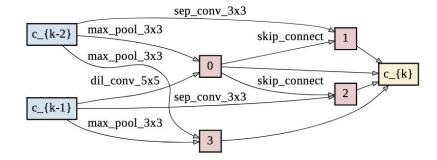
Architecture	Test Err. (%)	Params (M)	Search Cost (GPU-days)	Search Method
DenseNet-BC [18]	3.46	25.6	-	manual
NASNet-A [55]	2.65	3.3	1800	RL
AmoebaNet-A [36]	$3.34{\pm}0.06$	3.2	3150	evolution
AmoebaNet-B [36]	$2.55 {\pm} 0.05$	2.8	3150	evolution
Hier-Evolution [28]	$3.75 {\pm} 0.12$	15.7	300	evolution
PNAS [27]	$3.41 {\pm} 0.09$	3.2	225	SMBO
ENAS [34]	2.89	4.6	0.5	RL
NAONet-WS [31]	3.53	3.1	0.4	NAO
DARTS (1 st order) [29]	$3.00{\pm}0.14$	3.3	0.4	gradient
DARTS (2 nd order) [29]	$2.76 {\pm} 0.09$	3.3	1	gradient
SNAS (mild) [49]	2.98	2.9	1.5	gradient
ProxylessNAS [7]	2.08	-	4	gradient
P-DARTS [8]	2.5	3.4	0.3	gradient
BayesNAS [52]	$2.81{\pm}0.04$	3.4	0.2	gradient
PC-DARTS [50]	$2.57{\pm}0.07$	3.6	0.1	gradient
SGAS (Cri.1 avg.)	$2.66{\pm}0.24^{*}$	3.7	0.25	gradient
SGAS (Cri.1 best)	2.39	3.8	0.25	gradient
SGAS (Cri.2 avg.)	$2.67{\pm}0.21^{*}$	3.9	0.25	gradient
SGAS (Cri.2 best)	2.44	4.1	0.25	gradient

Performance comparison with state-of-the-art image classifiers on CIFAR-10.

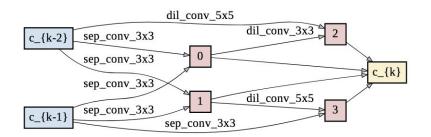
Results – SGAS for CNN on ImageNet



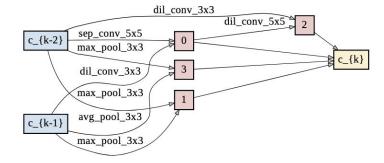
(a) Normal cell of the best model with SGAS (Cri. 1) on ImageNet



(b) Reduction cell of the best model with SGAS (Cri. 1) on ImageNet



(c) Normal cell of the best model with SGAS (Cri. 2) on ImageNet



(d) Reduction cell of the best model with SGAS (Cri. 2) on ImageNet

Results – SGAS for CNN on ImageNet

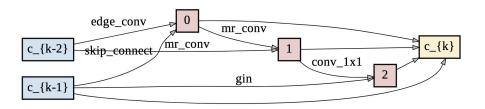
Architecture	Test Er	r. (%)	Params	$\times +$	Search Cost	Search
	top-1	top-5	(M)	(M)	(GPU-days)	Method
Inception-v1 [41]	30.2	10.1	6.6	1448	-	manual
MobileNet [16]	29.4	10.5	4.2	569	-	manual
ShuffleNet 2x (v1) [51]	26.4	10.2	~ 5	524	-	manual
ShuffleNet 2x (v2) [32]	25.1	-	~ 5	591	-	manual
NASNet-A [55]	26	8.4	5.3	564	1800	RL
NASNet-B [55]	27.2	8.7	5.3	488	1800	RL
NASNet-C [55]	27.5	9	4.9	558	1800	RL
AmoebaNet-A [36]	25.5	8	5.1	555	3150	evolution
AmoebaNet-B [36]	26	8.5	5.3	555	3150	evolution
AmoebaNet-C [36]	24.3	7.6	6.4	570	3150	evolution
PNAS [27]	25.8	8.1	5.1	588	225	SMBO
MnasNet-92 [42]	25.2	8	4.4	388	=	RL
DARTS (2 nd order) [29]	26.7	8.7	4.7	574	4.0	gradient
SNAS (mild) [49]	27.3	9.2	4.3	522	1.5	gradient
ProxylessNAS [7]	24.9	7.5	7.1	465	8.3	gradient
P-DARTS [8]	24.4	7.4	4.9	557	0.3	gradient
BayesNAS [52]	26.5	8.9	3.9	-	0.2	gradient
PC-DARTS [50]	25.1	7.8	5.3	586	0.1	gradient
SGAS (Cri.1 avg.)	$24.4 {\pm} 0.2$	$7.3{\pm}0.1$	5.3	579	0.25	gradient
SGAS (Cri.1 best)	24.2	7.2	5.3	585	0.25	gradient
SGAS (Cri.2 avg.)	$24.4 {\pm} 0.2$	$7.4{\pm}0.1$	5.4	597	0.25	gradient
SGAS (Cri.2 best)	24.1	7.3	5.4	598	0.25	gradient

Performance comparison with state-of-the-art image classifiers on ImageNet.

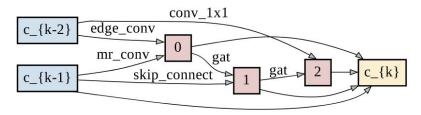
Results – SGAS for GCN on ModelNet

Architecture	OA (%)	Params (M)	Search Cost (GPU-days)
3DmFV-Net [3]	91.6	45.77	manual
SpecGCN [46]	91.5	2.05	manual
PointNet++ [37]	90.7	1.48	manual
PCNN [2]	92.3	8.2	manual
PointCNN [25]	92.2	0.6	manual
DGCNN [47]	92.2	1.84	manual
KPConv [44]	92.9	14.3	manual
Random Search	92.65±0.33	8.77	random
SGAS (Cri.1 avg.)	$92.69 {\pm} 0.20$	8.78	0.19
SGAS (Cri.1 best)	92.87	8.63	0.19
SGAS (Cri.2 avg.)	$92.92{\pm}0.19$	8.87	0.19
SGAS (Cri.2 best)	93.23	8.49	0.19
SGAS (Cri.2 small best)	93.07	3.86	0.19

Comparison with state-of-the-art architectures for 3D object classification on ModelNet40.



(a) Normal cell of the best model with SGAS (Cri. 1) on ModelNet



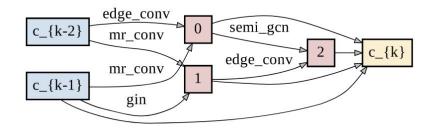
(b) Normal cell of the best model with SGAS (Cri. 2) on ModelNet

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

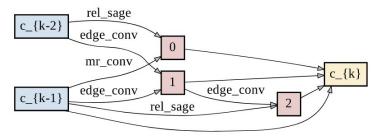
Results – SGAS for GCN on PPI

Architecture	micro-F1 (%)	Params (M)	Search Cost (GPU-days)
GraphSAGE (LSTM) [14]	61.2	0.26	manual
GeniePath [30]	97.9	1.81	manual
GAT [44]	97.3 ± 0.2	3.64	manual
DenseMRGCN-14 [23]	99.43	53.42	manual
ResMRGCN-28 [23]	99.41	14.76	manual
Random Search	99.36±0.04	23.70	random
SGAS (Cri.1 avg.)	$99.38 {\pm} 0.17$	25.01	0.003
SGAS (Cri.1 best)	99.46	23.18	0.003
SGAS (Cri.2 avg.)	$99.40 {\pm} 0.09$	25.93	0.003
SGAS (Cri.2 best)	99.46	29.73	0.003
SGAS (small)	98.89	0.40	0.003

Comparison with state-of-the-art architectures for node classification on PPI.

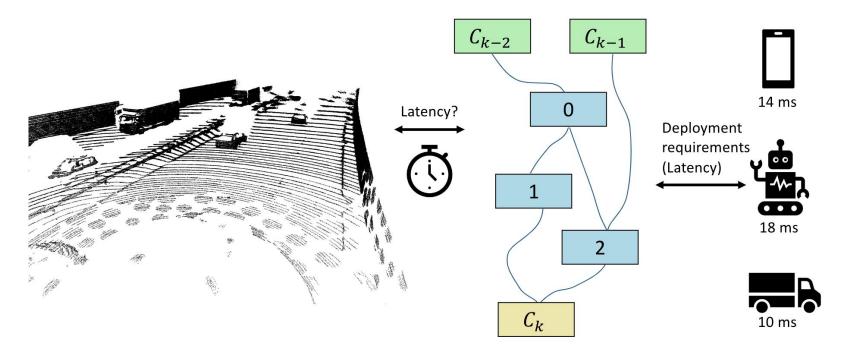


(a) Normal cell of the best model with SGAS (Cri. 1) on PPI



(b) Normal cell of the best model with SGAS (Cri. 2) on PPI

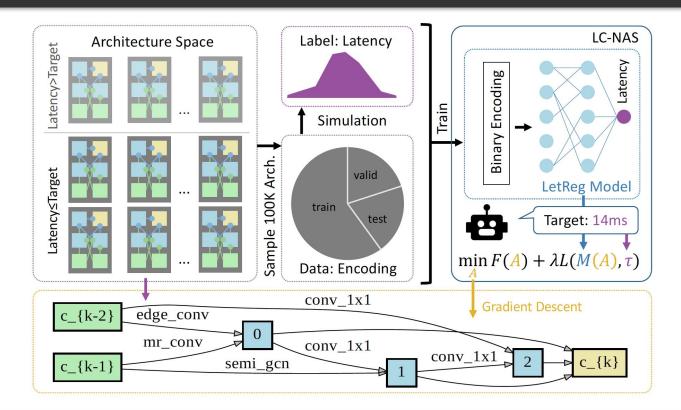
LC-NAS: Latency Constrained Neural Architecture Search



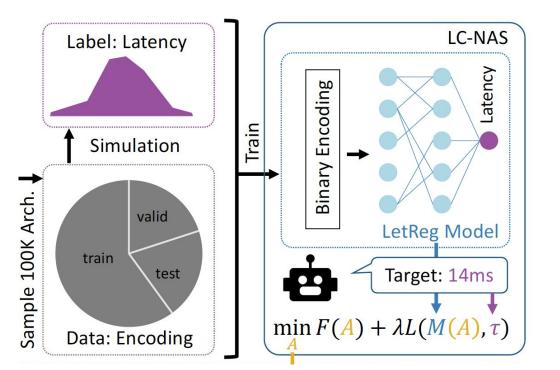
How to find the best performing model given an inference latency budget?

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

LC-NAS - Pipeline



LC-NAS – Latency Regressor

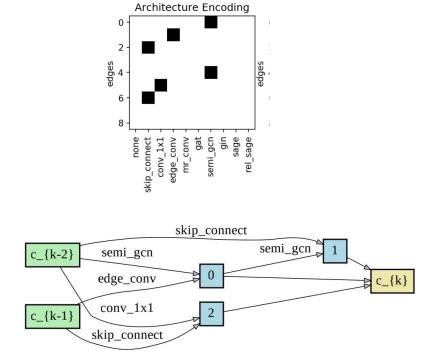


Our search space is a DAG with 9 edges and 10 candidate operations for each edge.

 9×10 binary encoding matrix $\mathbf{E} \in \{0, 1\}^{9 \times 10}$

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

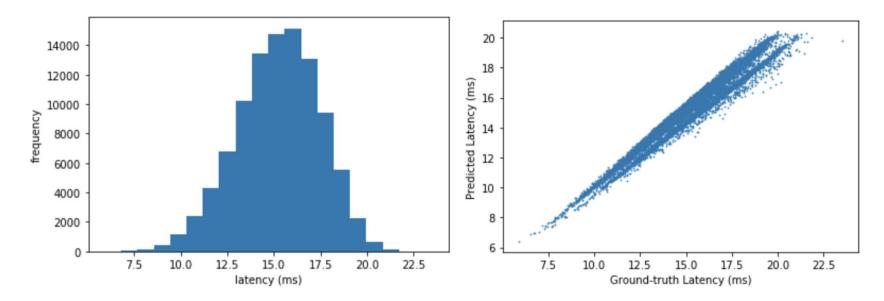
LC-NAS – Latency Regressor



Our search space is a DAG with 9 edges and 10 candidate operations for each edge.

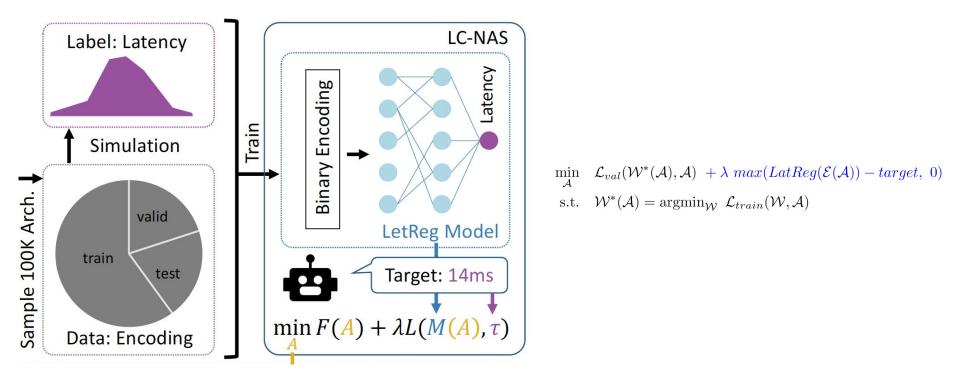
 9×10 binary encoding matrix $\mathbf{E} \in \{0, 1\}^{9 \times 10}$

LC-NAS – Latency Regressor



LatReg Model (a 3-layer MLP): data distribution and performance.

LC-NAS - Target Latency as Constraint



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

LC-NAS - Target Latency as Constraint

$$\beta_{m,n} = softmax(\alpha_{m,n}|\boldsymbol{\alpha}_m) = \frac{\exp(\alpha_{m,n})}{\sum_k \exp(\alpha_{m,k})}$$

$$\zeta_{m,n}=rac{1}{eta_{m,n}}$$
 if $n=n^*$

$$\zeta_{m,n}=0$$
 if $n
eq n^*$

Approximate non-differentiable heuristics to make it differentiable

$$\mathcal{E}(\alpha_{m,n}) = \tilde{e}_{m,n} \approx \beta_{m,n} \cdot \zeta_{m,n}$$

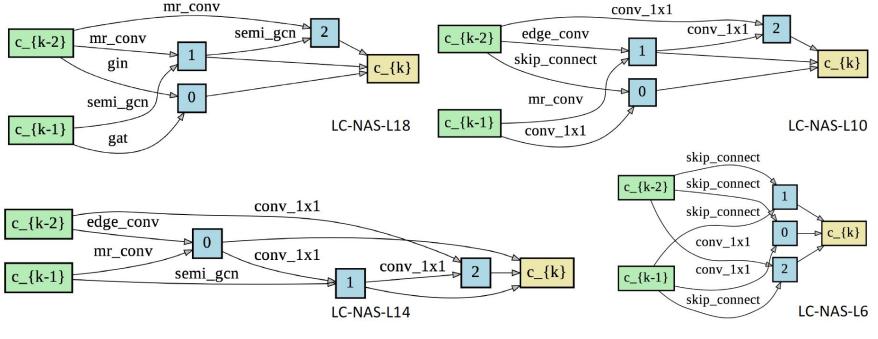
LC-NAS - Target Latency as Constraint

$$\frac{\partial \mathcal{L}_{lat}}{\partial \alpha_{m,n}} = \sum_{k} \frac{\partial \mathcal{L}_{lat}}{\partial \beta_{m,k}} \cdot \frac{\partial \beta_{m,k}}{\partial \alpha_{m,n}} = \sum_{k} \frac{\partial \mathcal{L}_{lat}}{\partial \tilde{e}_{m,k}} \cdot \frac{\partial \tilde{e}_{m,k}}{\partial \beta_{m,k}} \cdot \frac{\partial \beta_{m,k}}{\partial \alpha_{m,n}}$$
(3)

where $\frac{\partial \beta_{m,k}}{\partial \alpha_{m,n}} = \beta_{m,n} - \beta_{m,n}^2$ if n = k and $\frac{\partial \beta_{m,k}}{\partial \alpha_{m,n}} = -\beta_{m,n} \cdot \beta_{m,k}$ if $n \neq k$. Since $\frac{\partial \tilde{e}_{m,k}}{\partial \beta_{m,k}} = \zeta_{m,k}$. We obtain the gradient as follows:

$$\frac{\partial \mathcal{L}_{lat}}{\partial \alpha_{m,n}} = \frac{\partial \mathcal{L}_{lat}}{\partial \tilde{e}_{m,n^*}} \cdot \frac{1}{\beta_{m,n^*}} \cdot \frac{\partial \beta_{m,n^*}}{\partial \alpha_{m,n}} = \begin{cases} \frac{\partial \mathcal{L}_{lat}}{\partial \tilde{e}_{m,n^*}} \cdot (1 - \beta_{m,n^*}) & \text{for } n = n^* \\ \frac{\partial \mathcal{L}_{lat}}{\partial \tilde{e}_{m,n^*}} \cdot -\beta_{m,n} & \text{for } n \neq n^* \end{cases}$$

LC-NAS for GCN on ModelNet



Discovered Cells

LC-NAS for GCN on ModelNet

		Latency (m	is)		Accuracy (%)		
Method	Target	Predicted	Measured	# Param. (M)	O.A.	C.A.	
LC-NAS-18	18	17.06	16.66	3.91	92.79	89.66	
LC-NAS-16	16	13.71	13.57	3.91	92.62	90.13	
LC-NAS-14	14	12.64	12.41	3.91	92.42	89.16	
LC-NAS-12	12	10.07	9.96	3.85	92.34	89.57	
LC-NAS-10	10	11.02	11.09	3.86	92.75	90.76	
LC-NAS-8	8	7.84	7.51	3.71	90.40	85.36	
LC-NAS-6	6	6.12	5.47	3.61	90.51	84.71	
Average	-	11.21	10.95	3.82	91.98	88.48	

Evaluation on ModelNet40.

Method	Lat. (ms)	O.A. (%)	Method	Lat. (ms)	O.A. (%)
PointNet [37]	4.21	89.2	LC-NAS-18	16.66	92.79
PointNet++ [38]	23.51	90.7	LC-NAS-16	13.57	92.62
DGCNN [53]	9.42	92.2	LC-NAS-14	12.41	92.42
PointCNN [27]	26.79	92.2	LC-NAS-12	9.96	92.34
PosPool (S) [31]	15.93	92.6	LC-NAS-10	11.09	92.75
SGAS [25]	16.62	92.9	LC-NAS-8	7.51	90.40
KPConv [50]	26.81	92.9	LC-NAS-6	5.47	90.51
RS-CNN [30]	58.4	93.6	-	-	-
DeepGCN [23]	56.7	93.6	-	-	-
PointMLP [32]	44.5	94.1	-	-	-

Comparison with SOTA on ModelNel40.

LC-NAS - Transfer on PartNet

Method	Lat. (ms)	Avg.	Bed	Bott	Chair	Clock	Dish	Disp	Door	Ear	Fauc	Knife	Lamp	Micro	Frid	Stora	Table	Trash	Vase
PointCNN	1402	46.49	41.9	41.8	43.9	36.3	58.7	82.5	37.8	48.9	60.5	34.1	20.1	58.2	42.9	49.4	21.3	53.1	58.9
SGAS	185	48.28	43.4	50.8	41.2	38.8	61.4	82.6	37.1	48.8	56.1	49.4	21.2	56.5	44.5	49.4	29.3	54.4	56.0
deep LPN	191	38.60	29.5	42.1	41.8	34.7	33.2	81.6	34.8	49.6	53.0	44.8	28.4	33.5	32.3	41.1	36.3	43.1	57.8
LC-NAS-10	143	48.10	41.4	50.5	39.6	37.8	61.1	82.9	37.4	48.4	53.6	48.5	22.3	57.8	46.6	47.9	31.1	54.8	56.0
LC-NAS-14	152	48.55	41.9	51.7	39.7	39.6	61.5	82.5	39.3	49.0	54.7	55.3	22.2	55.1	45.2	48.0	30.3	54.6	54.9

Part Segmentation on PartNet (part mIoU % on level 3).

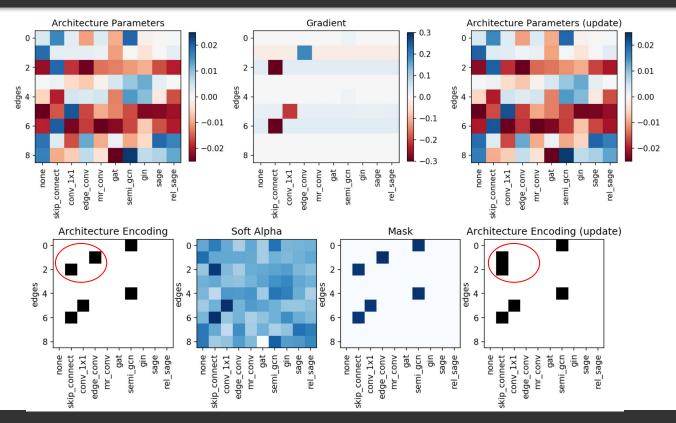
جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

LC-NAS - Ablation

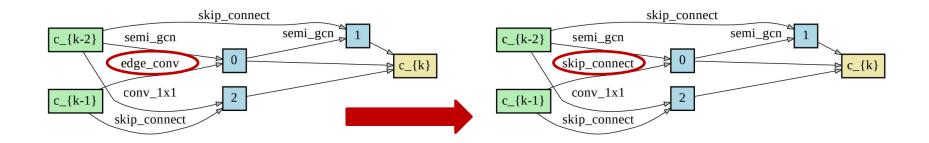
λ	Latency (ms)	0.A. (%)	C.A. (%)		
0.5	6.60	90.24	84.70		
0.1	6.19	90.76	85.37		
0.05	6.35	90.28	84.90		
0.01	9.64	92.26	89.00		
0.005	8.82	86.83	80.65		
0.001	14.63	92.63	89.98		
0.0005	12.08	92.50	89.75		
0.0001	18.71	92.50	89.68		

Ablation on Non-Targeted Latency Loss.

LC-NAS – Gradient Visualization

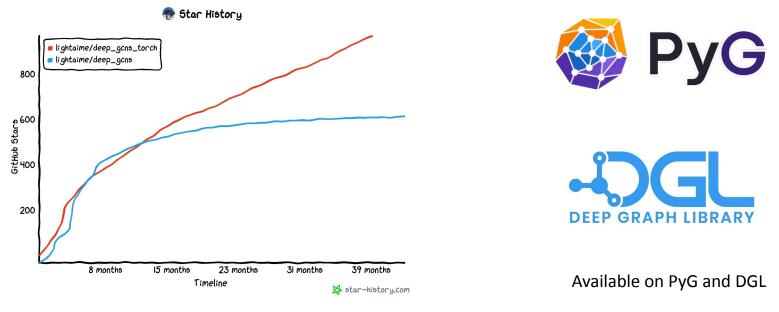


LC-NAS – Gradient Visualization



Search dynamic with a targeted latency constraint

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

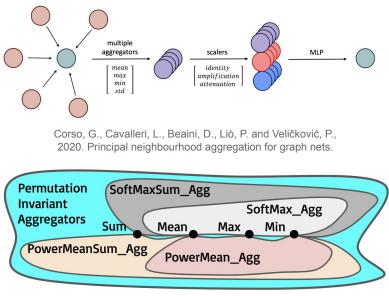


> 1500 Stars (Pytorch + Tensorflow), 1200 citations

Open Source

PyG 2.1 Release

Join PyG.org Team as a core member

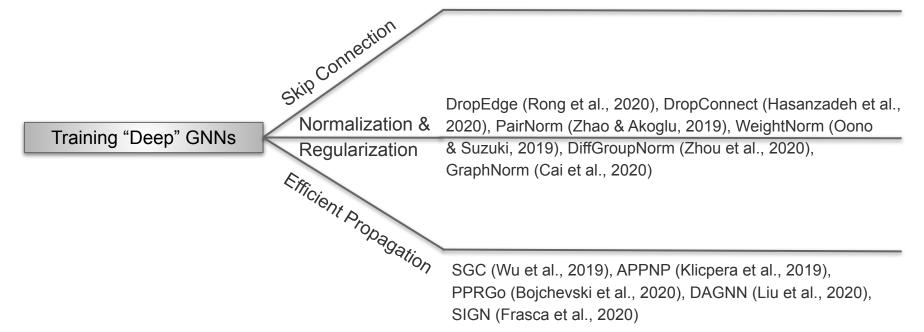


Li, G., Xiong, C., Thabet, A. and Ghanem, B., 2020. Deepergcn: All you need to train deeper gcns.

Make the concept of aggregation a first-class principle in PyG

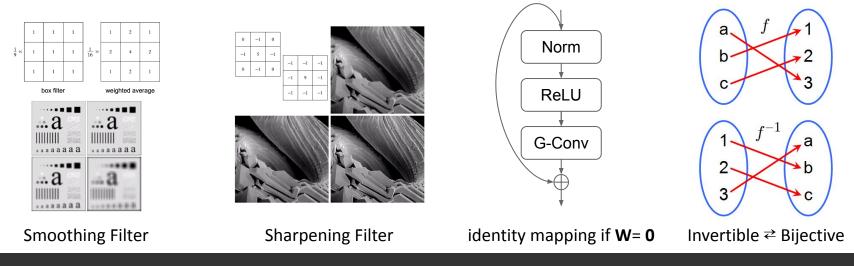
Training "Deep" GNNs

JKNet (Xu et al., 2018), DeepGCNs (Li et al., 2019; 2020), Aff-GCN (Gong et al., 2020), GCNII (Chen et al., 2020), Implicit Acceleration (Xu et al., 2021), GNN1000 (Li et al., 2021)

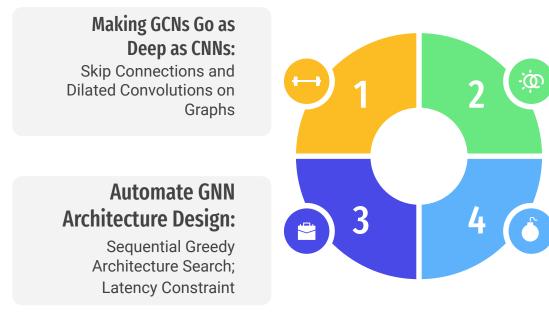


Discussions

- Over-smoothing assumption is too strong (e.g. ignoring weights and activations)
- Why do not over-smooth? Possibly, Identity mapping, Invertible Graph Conv
- Depth and diameter (1001 layers GNN on ogbn-proteins with a graph diameter as 9)
- Depth and width (compounding scaling rule)
- Depth and datasets (benefit more on geometric graphs, 3D, proteins, molecules but less on citation networks)
- OOD split on OGB is challenging, need other techniques to help (transfer learning, zero-shot learning)



Towards Structured Intelligence with Deep Graph Neural Networks



Making GCNs Go as Deep as CNNs:

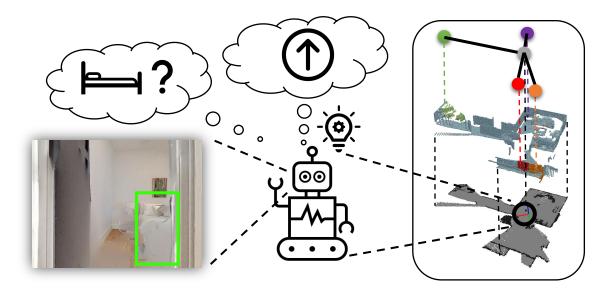
Message Aggregation Functions; Memory Efficiency

Ongoing Work and Research Plan:

Structured Navigation; Research Plan

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

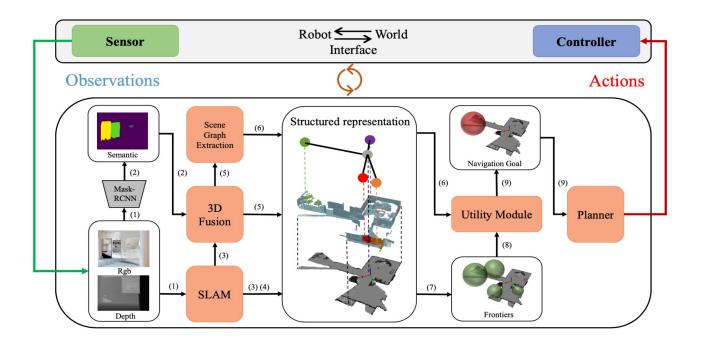
Structured Navigation



Object Goal Navigation

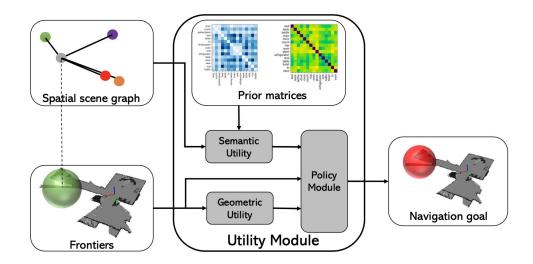
StructNav ICRA'23 Submission

Structured Navigation



StructNav Pipeline

Structured Navigation



Our method:

Inject semantics to Geometric Frontiers with Scene Graph and Large-Scale Language Model

+Training Free

- + 4.3% Success Rate
- + 7.5% Success-weighed Path Length (SPL)

Contributed projects

FLAG: Robust Optimization as Data Augmentation for Large-scale Graphs (CVPR'2022)
Kezhi Kong, <u>Guohao Li</u>, Mucong Ding, Zuxuan Wu,
Chen Zhu, Bernard Ghanem, Gavin Taylor, Tom Goldstein
ASSA: Anisotropic Separable Set Abstraction for Efficient
Point Cloud Representation Learning (NeurIPS'2021 Spotlight)
Guocheng Qian, Hasan Hammoud, <u>Guohao Li</u>, Ali Thabet, Bernard Ghanem

PU-GCN: Point Cloud Upsampling via Graph

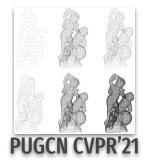
Convolutional Network (CVPR'2021) Guocheng Qian, Abdulellah Abualshour, <u>Guohao Li</u>, Ali Thabet, Bernard Ghanem

Learning Scene Flow in 3D Point Clouds with Noisy Pseudo Labels Anonymous Submission

When NAS Meets Trees: A New Paradigm for Neural Architecture Search Anonymous Submission

Knowledge-aware Global Reasoning for Situation Recognition Anonymous Submission

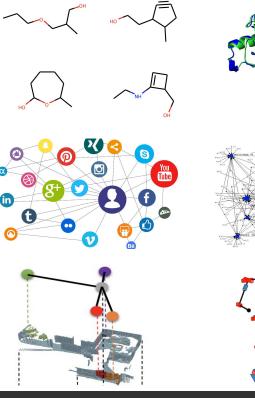
UnrealNAS: Can We Search Neural Architectures with Unreal Data? Anonymous Submission





جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Towards Structured Intelligence with Deep Graph Neural Networks



Architectures.

- How to train large-scale GNNs efficiently?
- What are the proper inductive biases to add to GNNs?
- Is there a universal model for learning on different types of graphs?

Learning Paradigms.

- How to pre-train models like GPT-3 and BERT for graphs?
- How to efficiently transfer pre-trained GNNs?
- How to make learning automatic?

Applications

- Learning on irregular 3D geometric data;
- Building structured knowledge representation of dynamic environments for embodied agents;
- Training transferable representation with GNNs on large-scale biological networks and 3D molecular graphs for scientific applications such as drug discovery, molecular property prediction and molecular design.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

PhD Journey

Bernard Ghanem

Pietro Liò



Xin Gao

Helmut Pottmann

Committee Members

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Matthias Müller

Vladlen koltun

Suryansh Kumar

Fisher Yu

Matthias Fey

Jure Leskovec

ETH zürich

Internship Mentors

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Matthias Müller

Ali Thabet

-

Guocheng Qian

Silvio Giancola

Neil Smith

Itzel C. Delgadillo

Abdulellah Abualshour

Chenxin Xiong Jesu

Jesus Zarzar

Collaborators

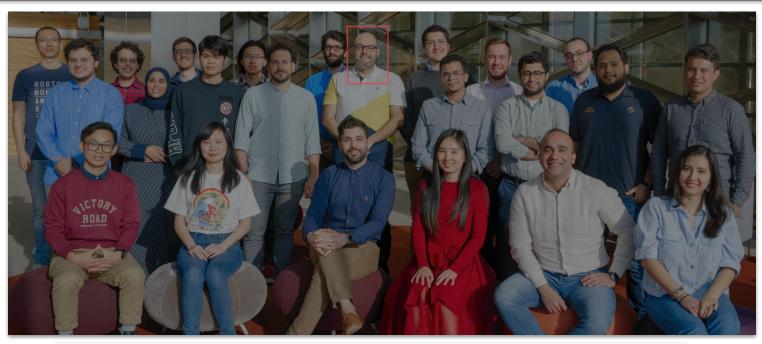
Mengmeng Xu

Kezhi Kong

Tom Goldstein Zhu Chen Vincent Casser Dominik L Michels Hasan Hammoud Weijiang Yu Haofan Wang **Junting Chen Bing Li** Cheng Zheng Chen Zhao **Xuanyang Zhang** Kurt Keutzer Shanghang Zhang Zhen Dong Kaicheng Zhou **Qiang Zhou** Mingfei Guo Kumail Al Hamoud Yasir Ghunaim Rana AlShedayed Hani Itani Jinjie Mai

. . .

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

IVUI

Image and Video Understanding Lab

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

My Beloved Family

Pair Programming Buddy - Eigen

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Bernard Ghanem

Took at ICCV Deadline

My PhD Supervisor

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Towards Structured Intelligence with Deep Graph Neural Networks

Guohao Li CS PhD Student @ KAUST guohao.li@kaust.edu.sa

