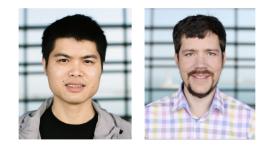


DeepGCNs for Representation Learning on Graphs

Guohao Li

NEURIPS MEETUP '19

- 1 DeepGCNs: Can GCNs Go as Deep as CNNs? (ICCV'2019 Oral) Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
- - DeepGCNs: Making GCNs Go as Deep as CNNs (arXiv'2019) Guohao Li*, Matthias Müller*, Guocheng Qian, Itzel C. Delgadillo, Abdulellah Abualshour, Ali Thabet, Bernard Ghanem
 - SGAS: Sequential Greedy Architecture Search (arXiv'2019) Guohao Li*, Guocheng Qian*, Itzel C. Delgadillo*, Matthias Müller, Ali Thabet, Bernard Ghanem

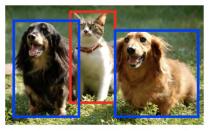


Guohao Li Matthias Müller Guocheng Qian Itzel C. Delgadillo

Abdulellah Abualshour

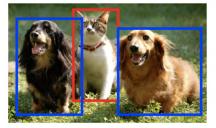
Ali Thabet

Bernard Ghanem



Grid Data : • Image

CAT, DOG

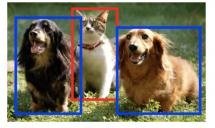


Grid Data :

Image

Video

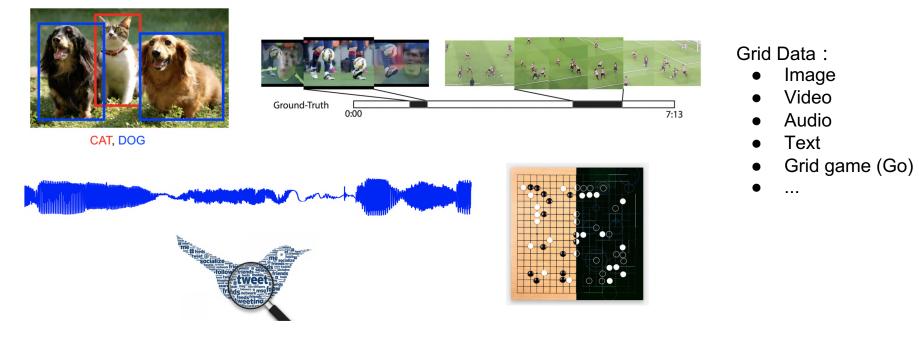
CAT, DOG

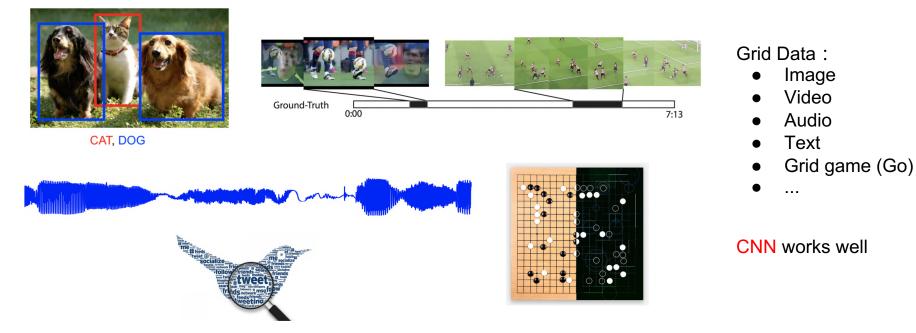


CAT, DOG

Grid Data :

- Image
- Video
- Audio
 - Text

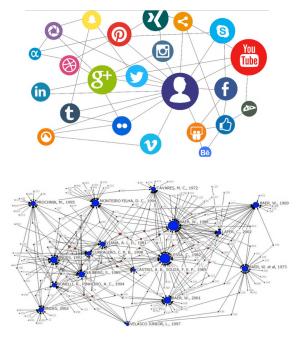




Why we need graph convolutional networks?

Tremendous non-grid graph structured data

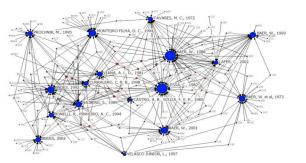
Lots of real-world applications need to deal with Non-Grid data



General Graphs :

- Social Networks
- Citation Networks

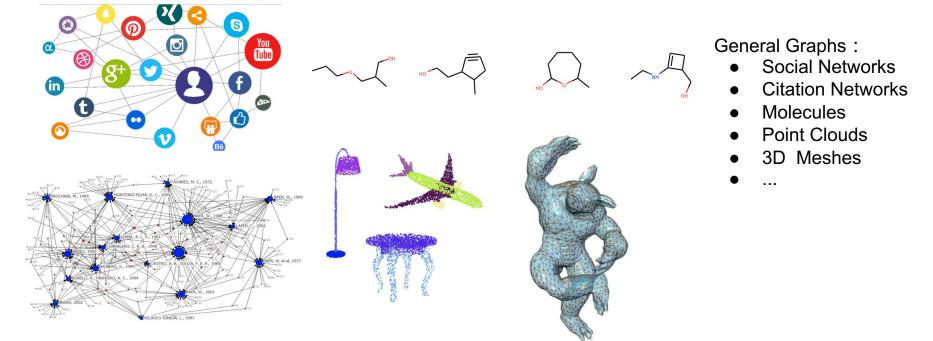
Lots of real-world applications need to deal with Non-Grid data



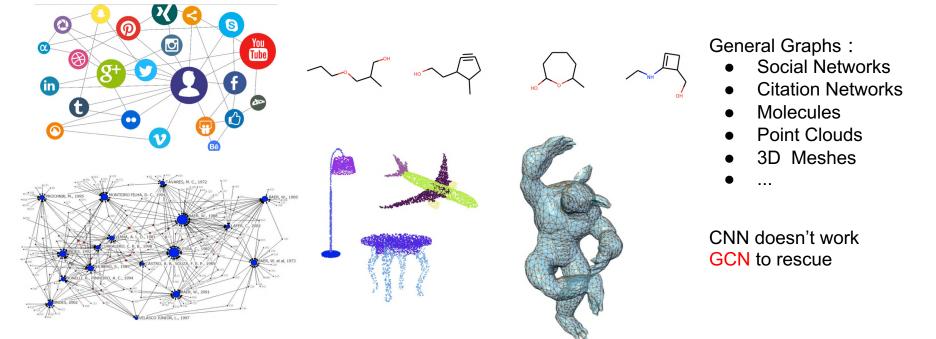
General Graphs :

- Social Networks
- Citation Networks
- Molecules

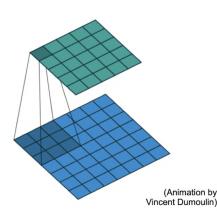
Lots of real-world applications need to deal with Non-Grid data

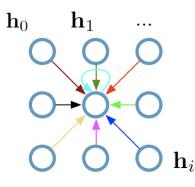


Lots of real-world applications need to deal with Non-Grid data



Single CNN layer with 3x3 filter:



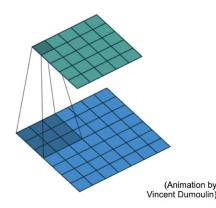


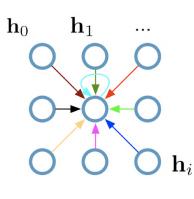
 $\mathbf{h}_i \in \mathbb{R}^F$ are (hidden layer) activations of a pixel/node

Slides by Thomas Kipf

CNN vs. GCN - Recap: CNN

Single CNN layer with 3x3 filter:





Update for a single pixel:

- Transform messages individually $\mathbf{W}_i \mathbf{h}_i$

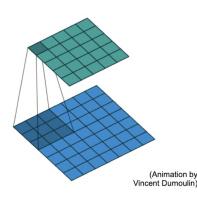
• Add everything up
$$\sum_i \mathbf{W}_i \mathbf{h}_i$$

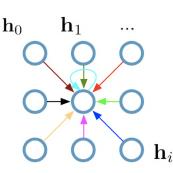
 $\mathbf{h}_i \in \mathbb{R}^F$ are (hidden layer) activations of a pixel/node

Slides by Thomas Kipf

CNN vs. GCN - Recap: CNN

Single CNN layer with 3x3 filter:





Update for a single pixel:

- Transform messages individually $\mathbf{W}_i \mathbf{h}_i$
- Add everything up $\sum_i \mathbf{W}_i \mathbf{h}_i$

 $\mathbf{h}_i \in \mathbb{R}^F$ are (hidden layer) activations of a pixel/node

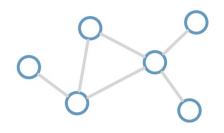
Full update:

Slides by Thomas Kipf

$$\mathbf{h}_{4}^{(l+1)} = \sigma \left(\mathbf{W}_{0}^{(l)} \mathbf{h}_{0}^{(l)} + \mathbf{W}_{1}^{(l)} \mathbf{h}_{1}^{(l)} + \dots + \mathbf{W}_{8}^{(l)} \mathbf{h}_{8}^{(l)} \right)$$

CNN vs. GCN - Introduction: GCN

Consider this undirected graph:

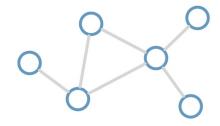


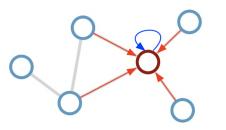
Slides by Thomas Kipf

CNN vs. GCN - Introduction: GCN

Consider this undirected graph:

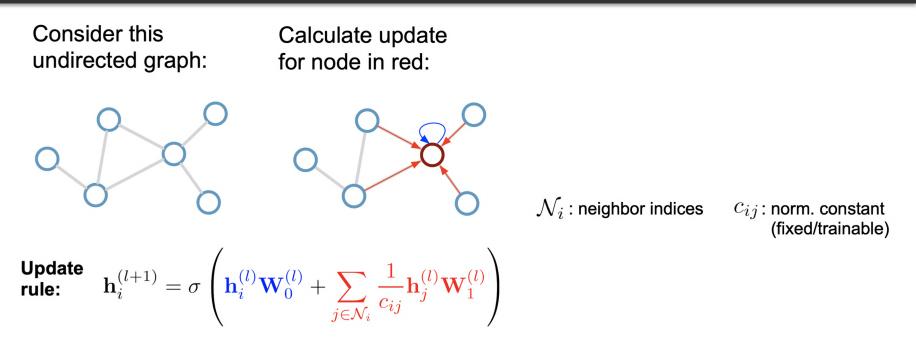
Calculate update for node in red:





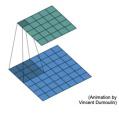
Slides by Thomas Kipf

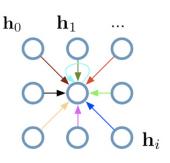
CNN vs. GCN - Introduction: GCN



Slides by Thomas Kipf

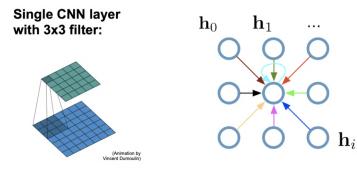






Convolutional Neural Network (CNN)

Slides by Thomas Kipf



Full update:

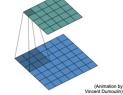
$$\mathbf{h}_{4}^{(l+1)} = \sigma \left(\mathbf{W}_{0}^{(l)} \mathbf{h}_{0}^{(l)} + \mathbf{W}_{1}^{(l)} \mathbf{h}_{1}^{(l)} + \dots + \mathbf{W}_{8}^{(l)} \mathbf{h}_{8}^{(l)} \right)$$

Convolutional Neural Network (CNN)

Slides by Thomas Kipf

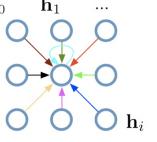
Calculate update for node in red:

DeepGCNs.org



Single CNN layer

with 3x3 filter:



Full update:

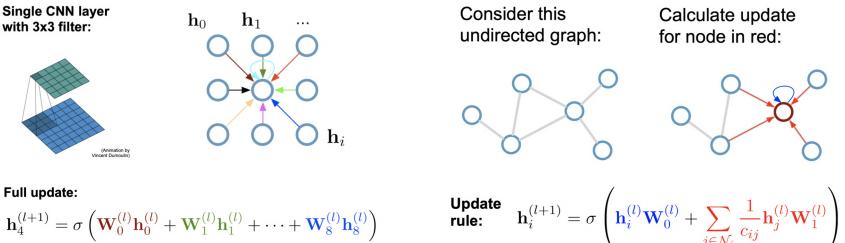
$$\mathbf{h}_{4}^{(l+1)} = \sigma \left(\mathbf{W}_{0}^{(l)} \mathbf{h}_{0}^{(l)} + \mathbf{W}_{1}^{(l)} \mathbf{h}_{1}^{(l)} + \dots + \mathbf{W}_{8}^{(l)} \mathbf{h}_{8}^{(l)} \right)$$

Convolutional Neural Network (CNN)

Graph Convolutional Network (GCN)

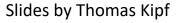
Slides by Thomas Kipf

DeepGCNs.org



 $\mathbf{h}_{4}^{(l+1)} = \sigma \left(\mathbf{W}_{0}^{(l)} \mathbf{h}_{0}^{(l)} + \mathbf{W}_{1}^{(l)} \mathbf{h}_{1}^{(l)} + \dots + \mathbf{W}_{8}^{(l)} \mathbf{h}_{8}^{(l)} \right)$

Convolutional Neural Network (CNN)

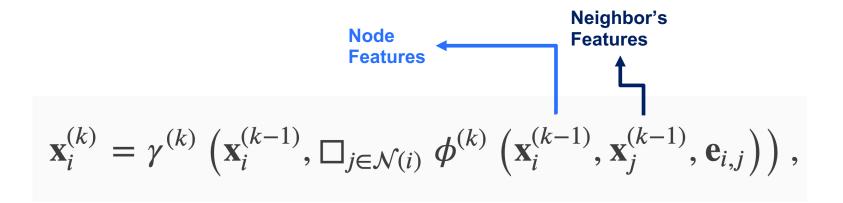


with 3x3 filter:

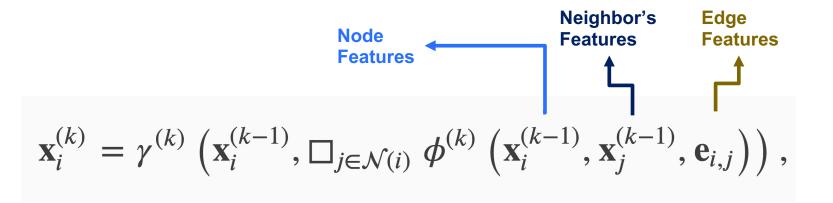
Full update:

DeepGCNs for Representation Learning on Graphs

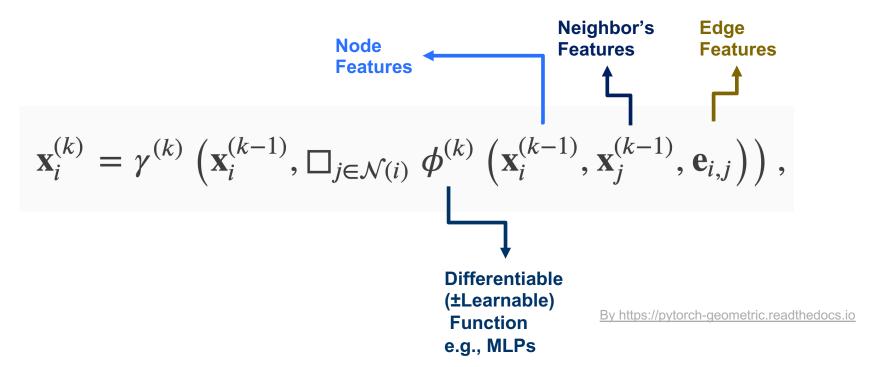
Graph Convolutional Network (GCN)

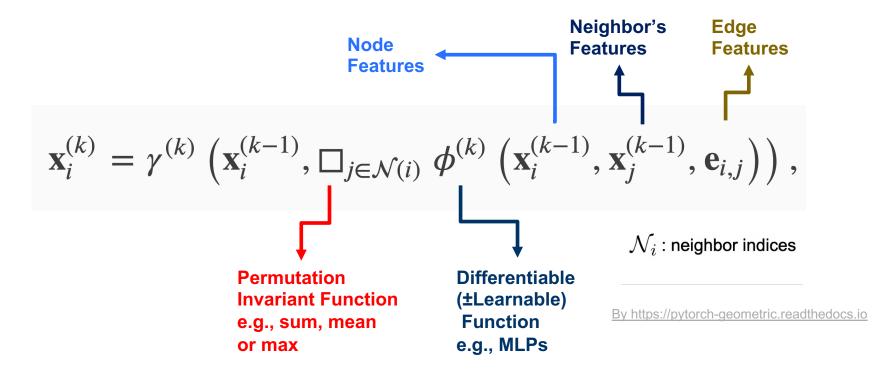


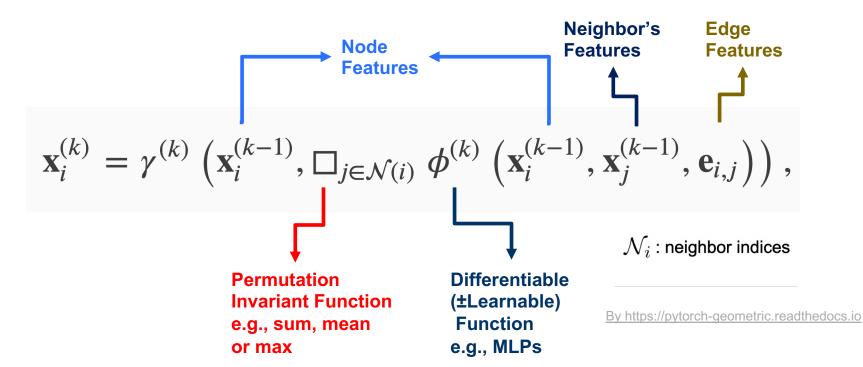
By https://pytorch-geometric.readthedocs.io

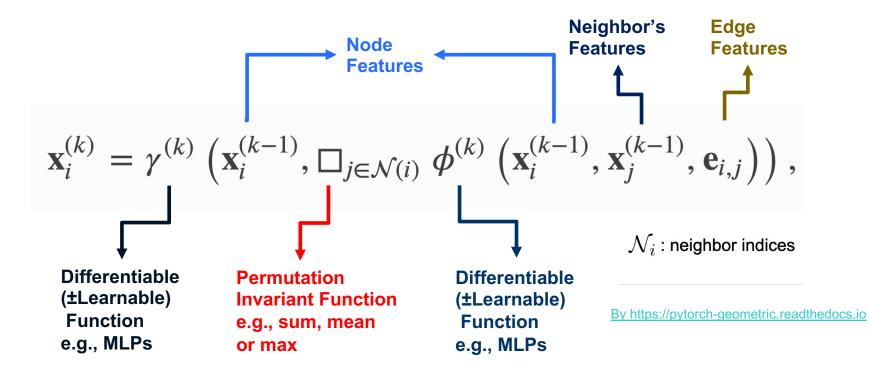


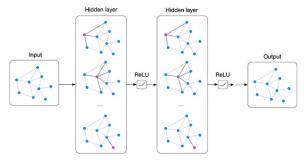
By https://pytorch-geometric.readthedocs.io

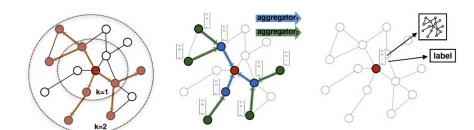




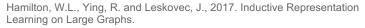




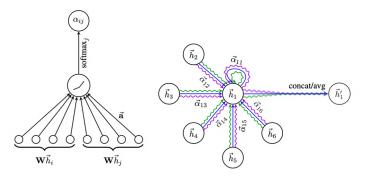




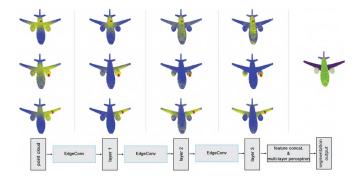
Kipf, T.N. and Welling, M., 2016. Semi-Supervised Classification with Graph Convolutional Networks.



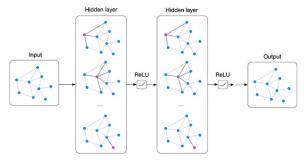
Most SOTA GCN models are no deeper than 3 or 4 layers.

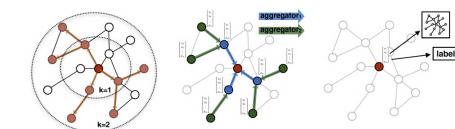


Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. and Bengio, Y., 2018. Graph Attention Networks.



Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M. and Solomon, J.M., 2018. Dynamic Graph CNN for Learning on Point Clouds.





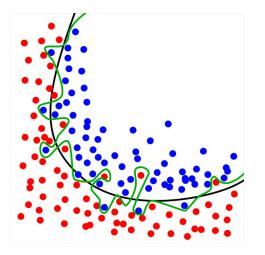
Kipf, T.N. and Welling, M., 2016. Semi-Supervised Classification with Graph Convolutional Networks.

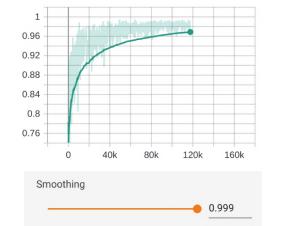
Hamilton, W.L., Ying, R. and Leskovec, J., 2017. Inductive Representation Learning on Large Graphs.

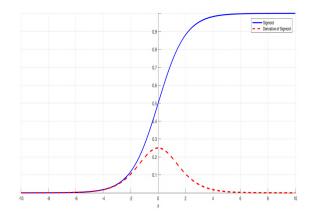
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. and Bengio, Y., 2018. Graph Attention Networks.

Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M. and Solomon, J.M., 2018. Dynamic Graph CNN for Learning on Point Clouds.

Why GCNs are limited to shallow structures?







Over-fitting

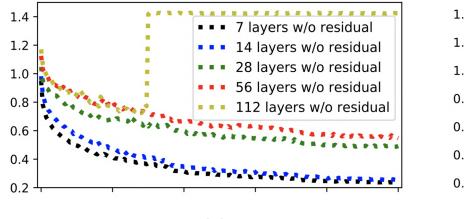
Over-smoothing

Vanishing Gradient

Figures from https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484

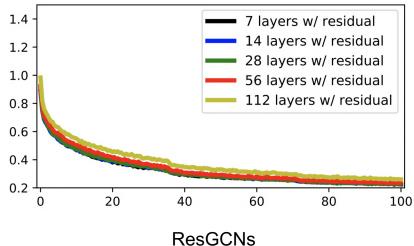
Training Loss of GCNs with varying depth

Deeper GCNs don't converge well.



PlainGCNs

Even a 112-layer deep GCN converges well!!!



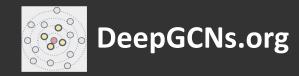
Training Loss of GCNs with varying depth

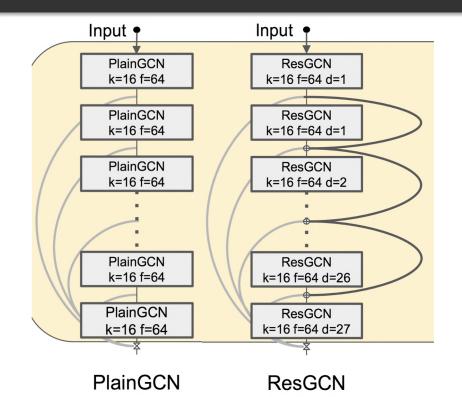
Deeper GCNs don't converge well.

Even a 112-layer deep GCN converges well!!!

ResGCNs

Residual Graph Connections

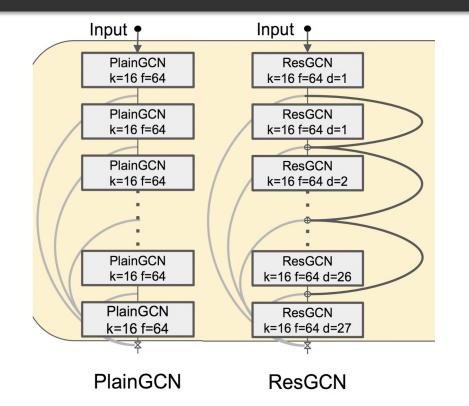




$$egin{aligned} \mathcal{G}_{l+1} &= \mathcal{H}(\mathcal{G}_l, \mathcal{W}_l) \ &= \mathcal{F}(\mathcal{G}_l, \mathcal{W}_l) + \mathcal{G}_l \end{aligned}$$

Residual Graph Connections

VISUAL COMPUTING



| جامعة الملك عبدالله

King Abdullah University of Science and Technology

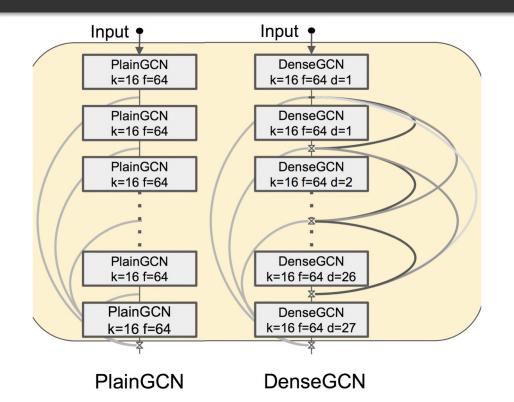
للعلوم والتقنية

$$egin{aligned} \mathcal{G}_{l+1} &= \mathcal{H}(\mathcal{G}_l, \mathcal{W}_l) \ &= \mathcal{F}(\mathcal{G}_l, \mathcal{W}_l) + \mathcal{G}_l \end{aligned}$$

An example: ResMRGCN

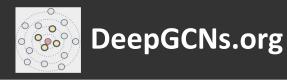
$$\begin{split} h_{\mathcal{N}^{(d)}(v_l)}^{res} &= max \left(\{h_{u_l} - h_{v_l} | u_l \in \mathcal{N}^{(d)}(v_l) \} \right), \quad \text{Aggregate} \\ h_{v_{l+1}}^{res} &= mlp \left(concat \left(h_{v_l}, h_{\mathcal{N}^{(d)}(v_l)}^{res} \right) \right), \qquad \text{Update} \\ h_{v_{l+1}} &= h_{v_{l+1}}^{res} + h_{v_l}. \qquad \text{Skip connection} \end{split}$$

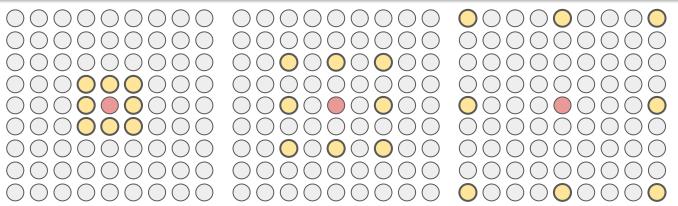
Dense Graph Connections



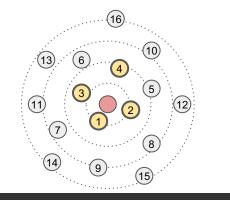
$$egin{aligned} \mathcal{G}_{l+1} &= \mathcal{H}(\mathcal{G}_l, \mathcal{W}_l) \ &= \mathcal{T}(\mathcal{F}(\mathcal{G}_l, \mathcal{W}_l), \mathcal{G}_l) \ &= \mathcal{T}(\mathcal{F}(\mathcal{G}_l, \mathcal{W}_l), ..., \mathcal{F}(\mathcal{G}_0, \mathcal{W}_0), \mathcal{G}_0). \end{aligned}$$

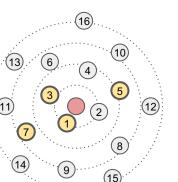
Dilated Graph Convolutions

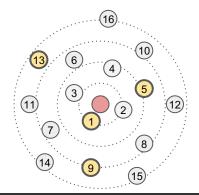




Dilated Convolution on a regular graph, e.g. 2D image



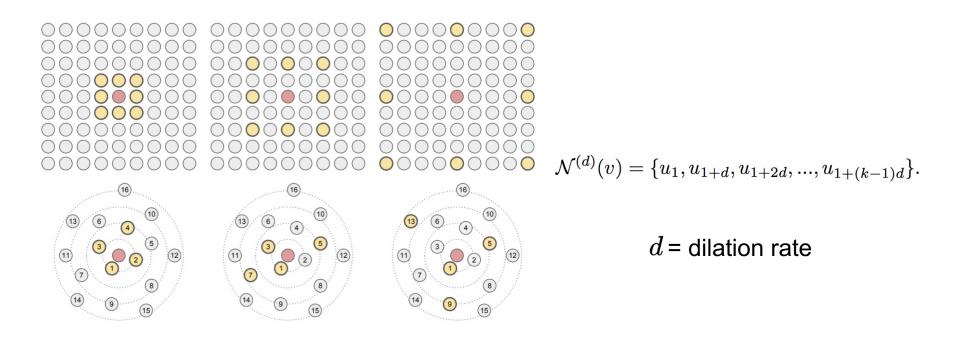




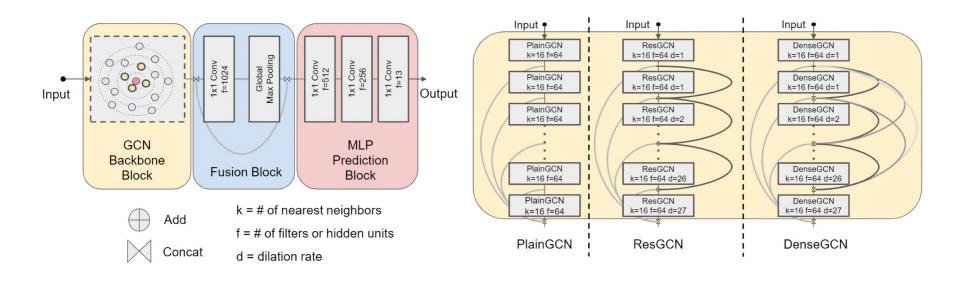
Dilated graph Convolution on an irregular graph, e.g. 3D point cloud

جامعة الملك عبدالله عبدالله العلوم والتقنية King Abdullah University of Science and Technology

Dilated Graph Convolutions

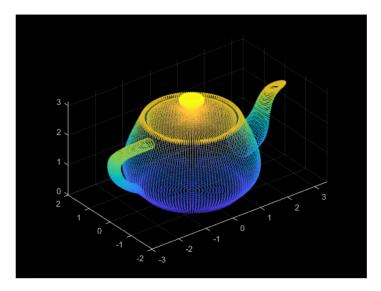


Deep Graph Convolutional Networks (GCNs)



Experiments

Graph Learning on 3D Point Clouds



- Point clouds are unordered and irregular
- Represented by 3D coordinates and extra features such as color, surface normal, etc.
- We use k-NN to construct the directed dynamic edges between points at every GCN layer in the feature space.

Stanford 3D Large-Scale Indoor Spaces Dataset

http://buildingparser.stanford.edu/dataset.html

We outperform other SOTA in 9 out of 13 classes

Method	OA	mIOU	ceiling	floor	wall	beam	column	window	door	table	chair	sofa	bookcase	board	clutter
PointNet [29]	78.5	47.6	88.0	88.7	69.3	42.4	23.1	47.5	51.6	54.1	42.0	9.6	38.2	29.4	35.2
MS+CU [8]	79.2	47.8	88.6	95.8	67.3	36.9	24.9	48.6	52.3	51.9	45.1	10.6	36.8	24.7	37.5
G+RCU [8]	81.1	49.7	90.3	92.1	67.9	44.7	24.2	52.3	51.2	58.1	47.4	6.9	39.0	30.0	41.9
PointNet++ [31]	-	53.2	90.2	91.7	73.1	42.7	21.2	49.7	42.3	62.7	59.0	19.6	45.8	48.2	45.6
3DRNN+CF [51]	86.9	56.3	92.9	93.8	73.1	42.5	25.9	47.6	59.2	60.4	66.7	24.8	57.0	36.7	51.6
DGCNN [43]	84.1	56.1	-	-	-	-	-	_	-	-	-	-	-	-	-
ResGCN-28 (Ours)	85.9	60.0	93.1	95.3	78.2	33.9	37.4	56.1	68.2	64.9	61.0	34.6	51.5	51.1	54.4

Table 1. Comparison of ResGCN-28 with state-of-the-art.

-	Class	DGCNN [6]	ResGCN-28 (Ours)
	ceiling	92.7	93.1
	floor	93.6	95.3
	wall	77.5	78.2
	beam	32.0	33.9
	column	36.3	37.4
Consistent improvements	window	52.5	56.1
•	door	63.7	68.2
across all the classes.	table	61.1	64.9
	chair	60.2	61.0
	sofa	20.5	34.6
	bookcase	47.7	51.5
	board	42.7	51.1
	clutter	51.5	54.4
-	mIOU	56.3	60.0

Table 2. Comparison of ResGCN-28 with DGCNN* (Our shallow baseline model).

* We reproduced the results of DGCNN on all classes since the results across all classes were not provided in the DGCNN paper.

-	Class	DGCNN [6]	ResGCN-28 (Ours)	
Consistent improvements across all the classes.	ceiling floor wall beam column window door table chair sofa bookcase board clutter	92.7 93.6 77.5 32.0 36.3 52.5 63.7 61.1 60.2 20.5 47.7 42.7 51.5	93.1 95.3 78.2 33.9 37.4 56.1 68.2 64.9 61.0 34.6 51.5 51.1 54.4	~ 4% boost in mIOU.
	mIOU	56.3	60.0	

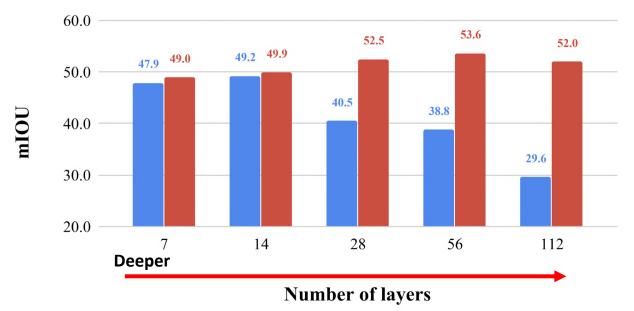
Table 2. Comparison of ResGCN-28 with DGCNN* (Our shallow baseline model).

* We reproduced the results of DGCNN on all classes since the results across all classes were not provided in the DGCNN paper.

PlainGCN VS. ResGCN

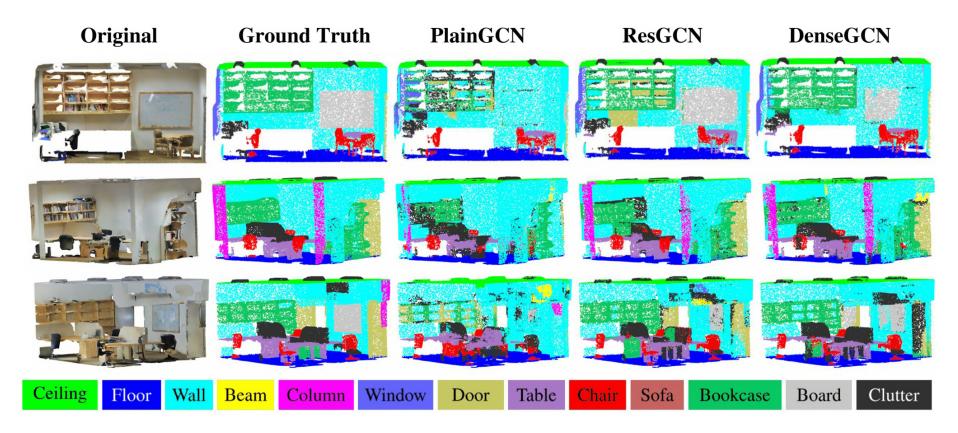


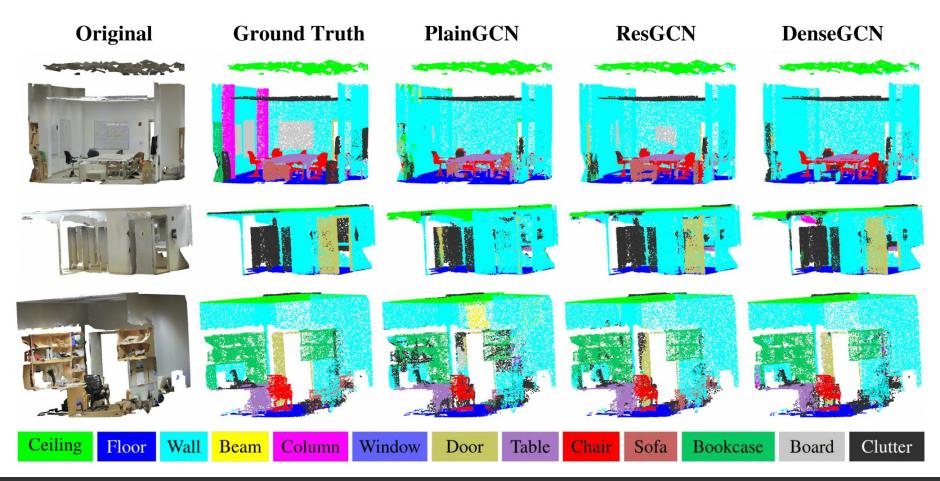
PlainGCN ResGCN



Qualitative Results

Visualizations on S3DIS





1/4x filters

Original

Ground Truth

ResGCN-28

1/2x filters

Reduce Network Width

Original

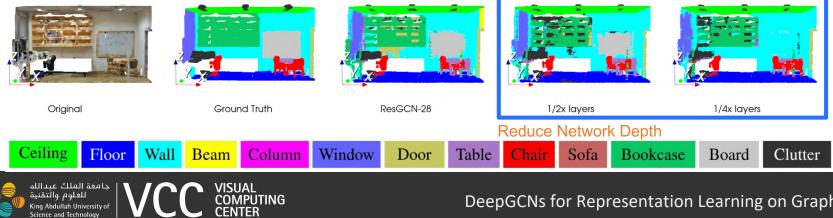
King Abdullah University of Science and Technology

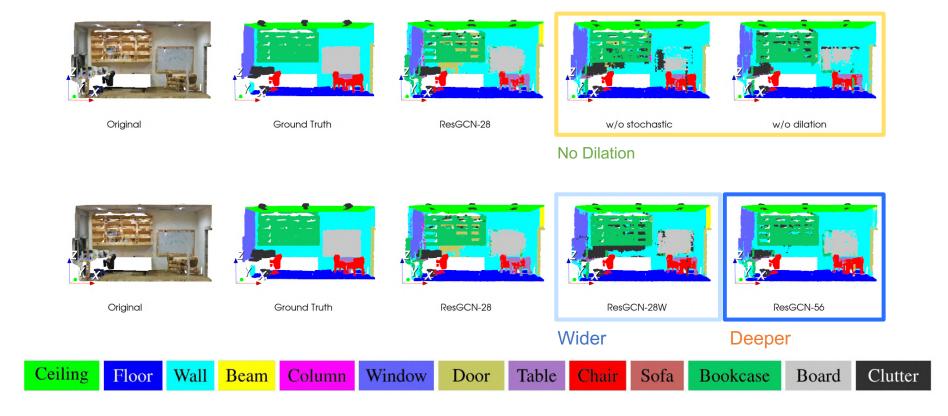
Ground Truth

ResGCN-28

1/4x NNs

1/2x NNs **Reduce Kernel Size**





More Results

GCN variants

- ResEdgeConv
- ResGraphSAGE
- ResGIN
- ResMRGCN

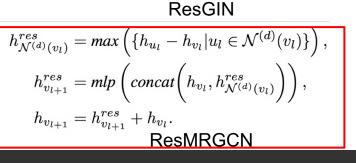
Model	mIoU	Δ mIoU	dynamic	connection	dilation	stochastic	# NNs	# filters	# layers
ResEdgeConv-28	52.49	0.00	\checkmark	$ $ \oplus	\checkmark	\checkmark	16	64	28
PlainGCN-28	40.31	-12.18	\checkmark				16	64	28
ResGraphSAGE-28	49.20	-3.29	\checkmark	•	\checkmark	\checkmark	16	64	28
ResGraphSAGE-N-28	49.02	-3.47	\checkmark	•	\checkmark	\checkmark	16	64	28
ResGIN28	42.81	-9.68	\checkmark	•	\checkmark	\checkmark	16	64	28
ResMRGCN-28	51.17	-1.32	\checkmark	•	\checkmark	\checkmark	16	64	28

Table 4. Comparisons of Deep GCNs variants on area 5 of S3DIS.

$$\begin{aligned} h_{v_{l+1}}^{res} &= max \left(mlp(\{concat(h_{v_l}, h_{u_l} - h_{v_l}) | u_l \in \mathcal{N}^{(d)}(v_l)\}) \right), \\ h_{v_{l+1}} &= h_{v_{l+1}}^{res} + h_{v_l}. \end{aligned}$$

$$\begin{aligned} \mathsf{ResEdgeConv} \\ h^{res}_{\mathcal{N}^{(d)}(v_l)} &= max \left(\{ mlp(h_{u_l}) | u_l \in \mathcal{N}^{(d)}(v_l) \} \right), \\ h^{res}_{v_{l+1}} &= mlp \left(concat \left(h_{v_l}, h^{res}_{\mathcal{N}^{(d)}(v_l)} \right) \right), \\ h_{v_{l+1}} &= h^{res}_{v_{l+1}} + h_{v_l}, \\ \mathsf{ResGraphSAGE} \end{aligned}$$

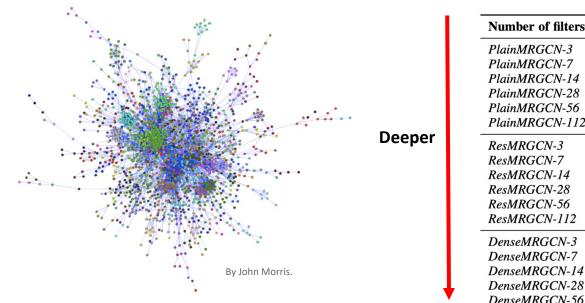
$$\begin{aligned} h_{v_{l+1}}^{res} &= mlp\left((1+\epsilon) \cdot h_{v_l} + sum(\{h_{u_l} | u_l \in \mathcal{N}^{(d)}(v_l)\})\right), \\ h_{v_{l+1}} &= h_{v_{l+1}}^{res} + h_{v_l}. \end{aligned}$$



More Results

DeepGCNs.org

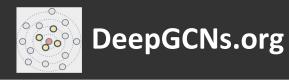
Wider

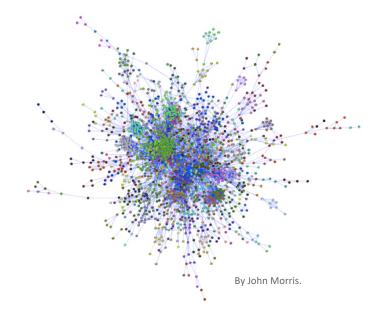


Number of filters	32	64	128	256
PlainMRGCN-3	95.84	97.60	98.58	99.13
PlainMRGCN-7	97.35	98.69	99.22	99.38
PlainMRGCN-14	97.55	99.02	99.31	99.34
PlainMRGCN-28	98.09	99.00	99.02	99.31
PlainMRGCN-56	92.70	97.43	97.31	97.61
PlainMRGCN-112	60.75	71.97	89.69	91.50
ResMRGCN-3	96.04	97.60	98.53	99.09
ResMRGCN-7	97.00	98.43	99.19	99.30
ResMRGCN-14	97.75	98.88	99.26	99.38
ResMRGCN-28	98.50	99.16	99.29	99.41
ResMRGCN-56	98.62	99.27	99.36	99.40
ResMRGCN-112	98.41	99.34	99.38	99.39
DenseMRGCN-3	95.96	97.85	98.66	99.11
DenseMRGCN-7	97.87	98.47	99.31	99.36
DenseMRGCN-14	98.93	99.00	99.01	99.43
DenseMRGCN-28	99.16	99.29	99.42	-
DenseMRGCN-56	99.22	-	-	-

Table 5. Node classification of biological networks.

More Results





Model	m-F1 score (%)
GraphSAGE [42]	61.20
GATConv [43]	97.30
VR-GCN [57]	97.80
GaAN [58]	98.71
GeniePath [59]	98.50
Cluster-GCN [56]	99.36
ResMRGCN-28 (Ours) DenseMRGCN-14 (Ours)	99.41 99.43

Table 6. Comparison of DeepGCNs with state-of-theart on PPI node classification.

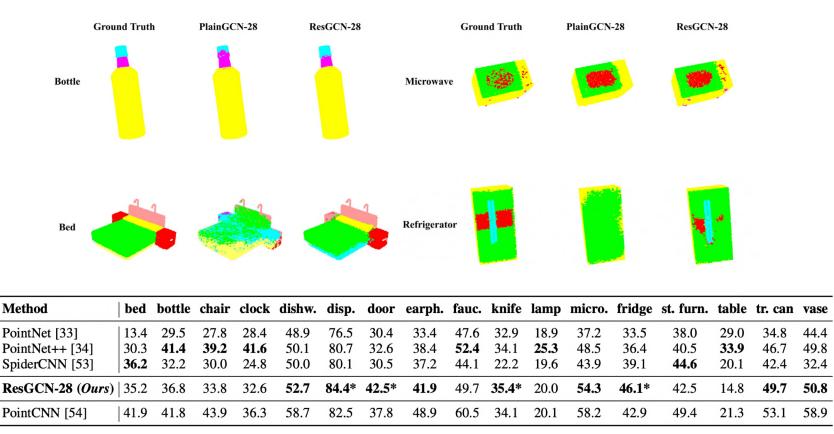
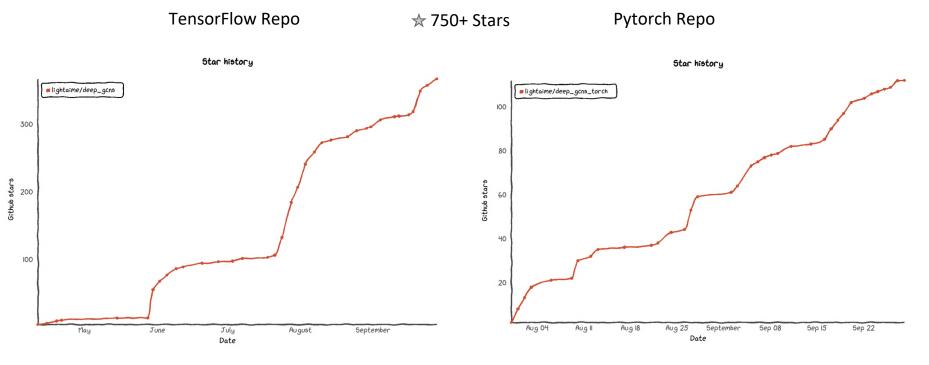


Table 7. Comparison of ResGCN-28 with other methods on PartNet Part Segmentation.

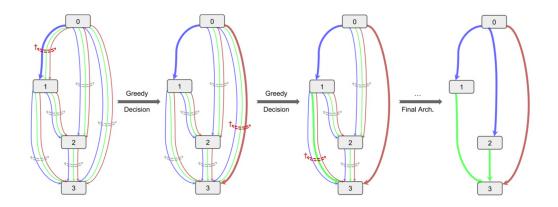


https://www.deepgcns.org

Can we learn how to design Deep GCN architectures automatically?

Can we learn how to design Deep GCN architectures automatically?

Neural Architecture Search!



SGAS: Sequential Greedy Architecture Search (arXiv 2019, Guohao Li et.al)

https://sites.google.com/kaust.edu.sa/sgas

Aiming to alleviate this common issue, we introduce sequential greedy architecture search (SGAS), an efficient method for neural architecture search.

By dividing the search procedure into sub-problems, SGAS chooses and prunes candidate operations in a greedy fashion.

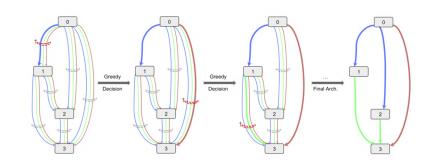


Figure 2. Illustration of Sequential Greedy Architecture Search.

We apply SGAS to search architectures for Convolutional Neural Networks (CNN) and Graph Convolutional Networks (GCN).

Extensive experiments show that SGAS is able to find SOTA architectures with minimal computational cost for tasks such as:

- image classification,
- point cloud classification,
- node classification in protein-protein interaction graphs.

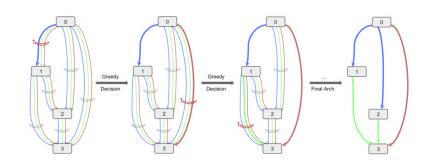


Figure 2. Illustration of Sequential Greedy Architecture Search.

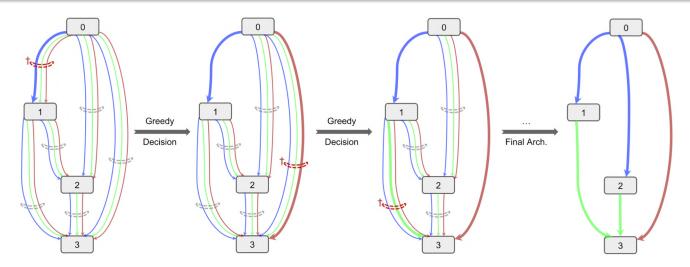


Figure 2. Illustration of Sequential Greedy Architecture Search.

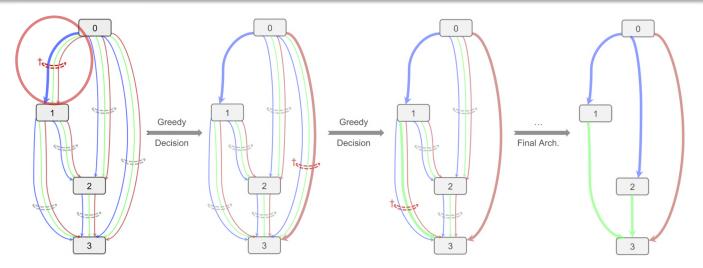


Figure 2. Illustration of Sequential Greedy Architecture Search. 1 If a decision epoch, select an edge $(i^{\dagger}, j^{\dagger})$ based on the greedy *Selection Criterion*

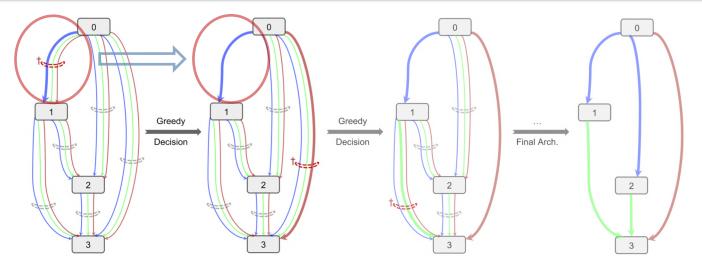


Figure 2. Illustration of Sequential Greedy Architecture Search. 1 If a decision epoch, select an edge $(i^{\dagger}, j^{\dagger})$ based on the greedy *Selection Criterion* 2 Determine the operation by replacing $\bar{o}^{(i^{\dagger}, j^{\dagger})}$ with $o^{(i^{\dagger}, j^{\dagger})} = \operatorname{argmax}_{o \in \mathcal{O}} \alpha_{o}^{(i^{\dagger}, j^{\dagger})}$

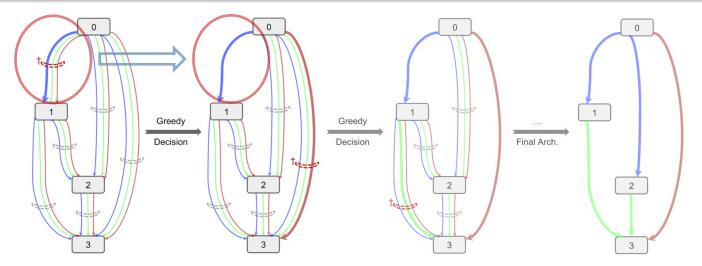


Figure 2. Illustration of Sequential Greedy Architecture Search. 1 If a decision epoch, select an edge $(i^{\dagger}, j^{\dagger})$ based on the greedy Selection Criterion 2 Determine the operation by replacing $\bar{o}^{(i^{\dagger}, j^{\dagger})}$ with $o^{(i^{\dagger}, j^{\dagger})} = \operatorname{argmax}_{o \in \mathcal{O}} \alpha_o^{(i^{\dagger}, j^{\dagger})}$ 3 Prune unchosen weights from \mathcal{W} , Remove $\alpha^{(i^{\dagger}, j^{\dagger})}$ from \mathcal{A}

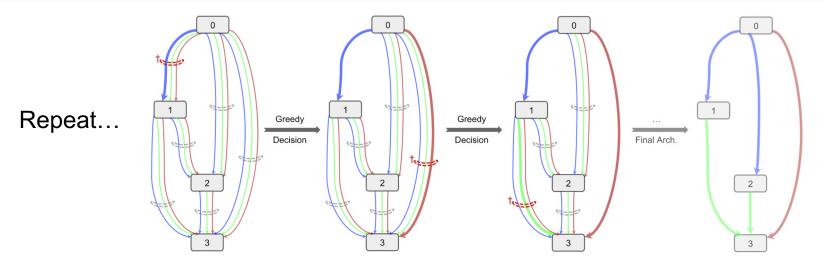


Figure 2. Illustration of Sequential Greedy Architecture Search. 1 If a decision epoch, select an edge $(i^{\dagger}, j^{\dagger})$ based on the greedy Selection Criterion 2 Determine the operation by replacing $\bar{o}^{(i^{\dagger}, j^{\dagger})}$ with $o^{(i^{\dagger}, j^{\dagger})} = \operatorname{argmax}_{o \in \mathcal{O}} \alpha_o^{(i^{\dagger}, j^{\dagger})}$ 3 Prune unchosen weights from \mathcal{W} , Remove $\alpha^{(i^{\dagger}, j^{\dagger})}$ from \mathcal{A}

Results – SGAS for GCN on ModelNet

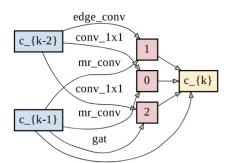
Architecture	OA (%)	Params (M)	Search Cost (GPU-days)
3DmFV-Net [4]	91.6	45.77	manual
SpecGCN [54]	91.5	2.05	manual
PointNet++ [42]	90.7	1.48	manual
PCNN [3]	92.3	8.2	manual
PointCNN [31]	92.2	0.6	manual
DGCNN [55]	92.2	1.84	manual
KPConv [51]	92.9	14.3	manual
Random Search	92.65±0.33	8.77	random
SGAS (Cri.1 avg.)	$92.69 {\pm} 0.20$	8.78	0.19
SGAS (Cri.1 best)	92.87	8.63	0.19
SGAS (Cri.2 avg.)	92.93±0.19	8.87	0.19
SGAS (Cri.2 best)	93.23	8.49	0.19
SGAS (Cri.2 small best)	93.07	3.86	0.19

Table 3. Comparison with state-of-the-art architectures for 3D object classification on ModelNet40.

COMPUTING

جامعة الملك عبدالله للعلوم والتقنية

King Abdullah University of Science and Technology



(a) Normal cell of the best model with SGAS (Cri. 1) on ModelNet



(b) Normal cell of the best model with SGAS (Cri. 2) on ModelNet

Results – SGAS for GCN on PPI

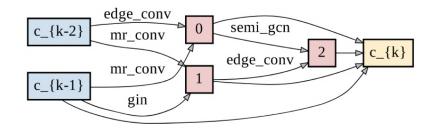
Architecture	micro-F1 (%)	Params (M)	Search Cost (GPU-days)
GraphSAGE (LSTM) [14]	61.2	0.26	manual
GeniePath [30]	97.9	1.81	manual
GAT [44]	97.3 ± 0.2	3.64	manual
DenseMRGCN-14 [23]	99.43	53.42	manual
ResMRGCN-28 [23]	99.41	14.76	manual
Random Search	99.36±0.04	23.70	random
SGAS (Cri.1 avg.)	$99.38 {\pm} 0.17$	25.01	0.003
SGAS (Cri.1 best)	99.46	23.18	0.003
SGAS (Cri.2 avg.)	$99.40 {\pm} 0.09$	25.93	0.003
SGAS (Cri.2 best)	99.46	29.73	0.003
SGAS (small)	98.89	0.40	0.003

Table 4. Comparison with state-of-the-art architectures for node classification on PPI.

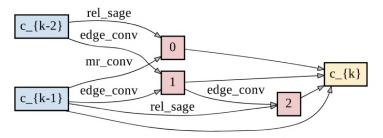
COMPUTING

جامعة الملك عبدالله للعلوم والتقنية

King Abdullah University of Science and Technology



(a) Normal cell of the best model with SGAS (Cri. 1) on PPI



(b) Normal cell of the best model with SGAS (Cri. 2) on PPI

Results – SGAS for CNN on CIFAR-10

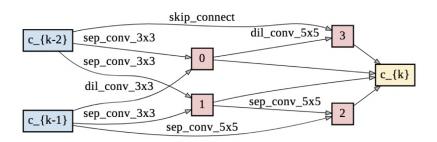
Architecture	Test Err. (%)	Params (M)	Search Cost (GPU-days)	Search Method
DenseNet-BC [18]	3.46	25.6	-	manual
NASNet-A [55]	2.65	3.3	1800	RL
AmoebaNet-A [36]	$3.34{\pm}0.06$	3.2	3150	evolution
AmoebaNet-B [36]	$2.55 {\pm} 0.05$	2.8	3150	evolution
Hier-Evolution [28]	$3.75 {\pm} 0.12$	15.7	300	evolution
PNAS [27]	$3.41 {\pm} 0.09$	3.2	225	SMBO
ENAS [34]	2.89	4.6	0.5	RL
NAONet-WS [31]	3.53	3.1	0.4	NAO
DARTS (1 st order) [29]	$3.00 {\pm} 0.14$	3.3	0.4	gradient
DARTS (2 nd order) [29]	$2.76 {\pm} 0.09$	3.3	1	gradient
SNAS (mild) [49]	2.98	2.9	1.5	gradient
ProxylessNAS [7]	2.08	-	4	gradient
P-DARTS [8]	2.5	3.4	0.3	gradient
BayesNAS [52]	$2.81 {\pm} 0.04$	3.4	0.2	gradient
PC-DARTS [50]	$2.57{\pm}0.07$	3.6	0.1	gradient
SGAS (Cri.1 avg.)	$2.66{\pm}0.24^{*}$	3.7	0.25	gradient
SGAS (Cri.1 best)	2.39	3.8	0.25	gradient
SGAS (Cri.2 avg.)	$2.67{\pm}0.21^{*}$	3.9	0.25	gradient
SGAS (Cri.2 best)	2.44	4.1	0.25	gradient

Table 1. Performance comparison with state-of-the-art image classifiers on CIFAR-10.

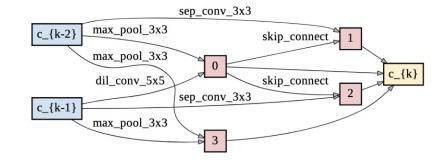
Results – SGAS for CNN on CIFAR-10

c_{k-1}

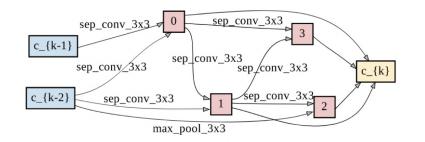
max_pool_3x3



(a) Normal cell of the best model with SGAS (Cri. 1) on CIFAR-10



(b) Reduction cell of the best model with SGAS (Cri. 1) on CIFAR-10



 max_pool_3x3

 c_{k-2}

 sep_conv_3x3

 dil_conv_3x3

 0

 sep_conv_5x5

 3

 max_pool_3x3

 c_{k}

max_pool_3x3

(c) Normal cell of the best model with SGAS (Cri. 2) on CIFAR-10

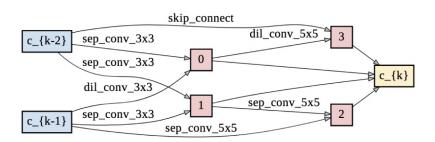
(d) Reduction cell of the best model with SGAS (Cri. 2) on CIFAR-10

Results – SGAS for CNN on ImageNet

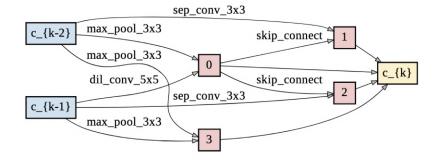
Architecture	Test Er	r. (%)	Params	$\times +$	Search Cost	Search
	top-1	top-5	(M)	(M)	(GPU-days)	Method
Inception-v1 [41]	30.2	10.1	6.6	1448	-	manual
MobileNet [16]	29.4	10.5	4.2	569	-	manual
ShuffleNet 2x (v1) [51]	26.4	10.2	~ 5	524	-	manual
ShuffleNet 2x (v2) [32]	25.1	-	~ 5	591	-	manual
NASNet-A [55]	26	8.4	5.3	564	1800	RL
NASNet-B [55]	27.2	8.7	5.3	488	1800	RL
NASNet-C [55]	27.5	9	4.9	558	1800	RL
AmoebaNet-A [36]	25.5	8	5.1	555	3150	evolution
AmoebaNet-B [36]	26	8.5	5.3	555	3150	evolution
AmoebaNet-C [36]	24.3	7.6	6.4	570	3150	evolution
PNAS [27]	25.8	8.1	5.1	588	225	SMBO
MnasNet-92 [42]	25.2	8	4.4	388	-	RL
DARTS (2 nd order) [29]	26.7	8.7	4.7	574	4.0	gradient
SNAS (mild) [49]	27.3	9.2	4.3	522	1.5	gradient
ProxylessNAS [7]	24.9	7.5	7.1	465	8.3	gradient
P-DARTS [8]	24.4	7.4	4.9	557	0.3	gradient
BayesNAS [52]	26.5	8.9	3.9	-	0.2	gradient
PC-DARTS [50]	25.1	7.8	5.3	586	0.1	gradient
SGAS (Cri.1 avg.)	$24.4{\pm}0.2$	$7.3 {\pm} 0.1$	5.3	579	0.25	gradient
SGAS (Cri.1 best)	24.2	7.2	5.3	585	0.25	gradient
SGAS (Cri.2 avg.)	$24.4 {\pm} 0.2$	$7.4 {\pm} 0.1$	5.4	597	0.25	gradient
SGAS (Cri.2 best)	24.1	7.3	5.4	598	0.25	gradient

Table 2. Performance comparison with state-of-the-art image classifiers on ImageNet.

Results – SGAS for CNN on ImageNet

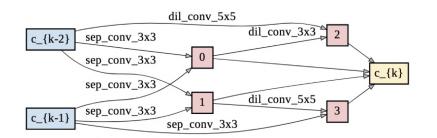


(a) Normal cell of the best model with SGAS (Cri. 1) on ImageNet



(b) Reduction cell of the best model with SGAS (Cri. 1) on ImageNet

dil conv 3x3

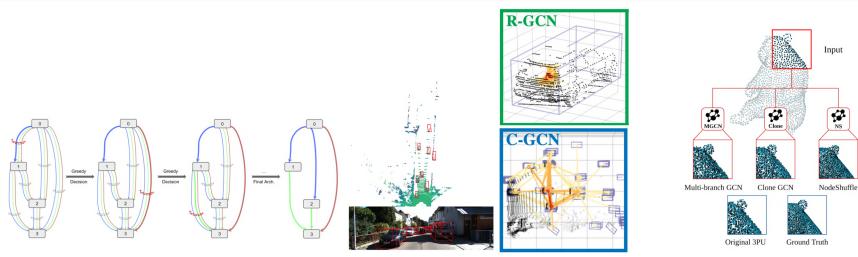


(c) Normal cell of the best model with SGAS (Cri. 2) on ImageNet

c_{k-2} sep_conv_5x5 0 dil_conv_5x5 2 dil_conv_3x3 3 dil_conv_3x3 3 c_{k-1} avg_pool_3x3 1 max_pool_3x3 4 max_p

(d) Reduction cell of the best model with SGAS (Cri. 2) on ImageNet

Follow-up works



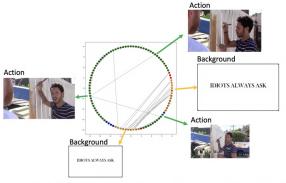
SGAS: Sequential Greedy Architecture Search. Guohao Li. et al.

PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. Jesue Zarzar. et al.

PU-GCN: Point Cloud Upsampling via Graph Convolutional Network. Guocheng Qian. et al.

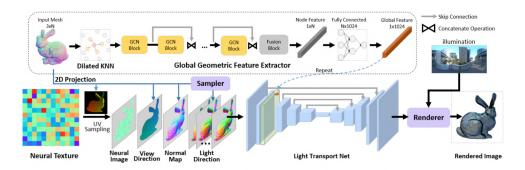
Ours

Follow-up works



Green: Action Red: Start Blue: End Yellow: Background Link: Nearest Neighbours

G-TAD: Sub-Graph Localization for Temporal Action Detection. Mengmeng xu. et al.



A Neural Rendering Framework for Free-Viewpoint Relighting. Zhang Chen. et al.

Useful materials or tools



- Thomas Kipf: <u>http://tkipf.github.io/misc/SlidesCambridge.pdf</u>
- Stanford SNAP: <u>http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part2-gnns.pdf</u>

Useful materials or tools

- Thomas Kipf: <u>http://tkipf.github.io/misc/SlidesCambridge.pdf</u>
- Stanford SNAP: <u>http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part2-gnns.pdf</u>

- Pytorch Geometric: <u>https://pytorch-geometric.readthedocs.io</u>
- Deep Graph Library: <u>https://www.dgl.ai/</u>
- TensorFlow Graphics: <u>https://github.com/tensorflow/graphics</u>

DeepGCNs for Representation Learning on Graphs

DeepGCNs: Can GCNs Go as Deep as CNNs? (*ICCV*'2019 Oral) Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem

DeepGCNs: Making GCNs Go as Deep as CNNs (*arXiv*'2019) Guohao Li*, Matthias Müller*, Guocheng Qian, Itzel C. Delgadillo, Abdulellah Abualshour, Ali Thabet, Bernard Ghanem

SGAS: Sequential Greedy Architecture Search (*arXiv'2019*) Guohao Li*, Guocheng Qian*, Itzel C. Delgadillo*, Matthias Müller, Ali Thabet, Bernard Ghanem

> Contact: <u>guohao.li@kaust.edu.sa</u> About me: <u>https://ghli.org</u>

