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Grid data vs. General graphs DeepGCNs.org

Why we need graph convolutional networks?

Tremendous non-grid graph structured data
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General Graphs：
● Social Networks
● Citation Networks
● Molecules
● Point Clouds
● 3D  Meshes
● ...

Grid data vs. General graphs

CNN doesn’t work
GCN to rescue

Lots of real-world applications need to deal with Non-Grid data

DeepGCNs.org
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Kipf, T.N. and Welling, M., 2016. Semi-Supervised 
Classification with Graph Convolutional Networks.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. 
and Bengio, Y., 2018. Graph Attention Networks.

Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M. and Solomon, J.M., 
2018. Dynamic Graph CNN for Learning on Point Clouds.

Hamilton, W.L., Ying, R. and Leskovec, J., 2017. Inductive Representation 
Learning on Large Graphs.

Most SOTA GCN models are no deeper than 3 or 4 layers.
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Most SOTA GCN models are no deeper than 3 or 4 layers.

Kipf, T.N. and Welling, M., 2016. Semi-Supervised 
Classification with Graph Convolutional Networks.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. 
and Bengio, Y., 2018. Graph Attention Networks.

Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M. and Solomon, J.M., 
2018. Dynamic Graph CNN for Learning on Point Clouds.

Hamilton, W.L., Ying, R. and Leskovec, J., 2017. Inductive Representation 
Learning on Large Graphs.

Why?
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Why GCNs are limited to shallow structures?

Over-fitting Over-smoothing Vanishing Gradient
Figures from https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484

https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
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Deeper GCNs don’t converge well. Even a 112-layer deep GCN converges well!!!
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Training Loss of GCNs with varying depth

PlainGCNs ResGCNs

Deeper GCNs don’t converge well. Even a 112-layer deep GCN converges well!!!

How can we train GCNs over 100+ layers?
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Residual Graph Connections DeepGCNs.org

Aggregate

Update

Skip connection

An example: ResMRGCN
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Dense Graph Connections DeepGCNs.org
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Dilated Graph Convolutions
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Dilated Convolution 
on a regular graph, 
e.g. 2D image

Dilated graph 
Convolution on an 
irregular graph, e.g. 
3D point cloud

DeepGCNs.org
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Dilated Graph Convolutions

= dilation rate

DeepGCNs.org
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Deep Graph Convolutional Networks (GCNs)
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Experiments
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Graph Learning on 3D Point Clouds

● Point clouds are unordered and irregular

● Represented by 3D coordinates and extra 
features such as color, surface normal, etc.

● We use k-NN to construct the directed 
dynamic edges between points at every 
GCN layer in the feature space.
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Stanford 3D Large-Scale Indoor Spaces Dataset

http://buildingparser.stanford.edu/dataset.html

http://buildingparser.stanford.edu/dataset.html
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Table 1. Comparison of ResGCN-28 with state-of-the-art.

We outperform other SOTA in 9 out of 13 classes
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Table 2. Comparison of ResGCN-28 with DGCNN* (Our shallow baseline model).

* We reproduced the results of DGCNN on all classes since the results across all classes were not provided in the DGCNN 
paper. 

Consistent improvements
across all the classes.
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Table 2. Comparison of ResGCN-28 with DGCNN* (Our shallow baseline model).

* We reproduced the results of DGCNN on all classes since the results across all classes were not provided in the DGCNN 
paper. 

Consistent improvements
across all the classes. ~ 4% boost in mIOU.
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PlainGCN VS. ResGCN DeepGCNs.org

Deeper
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Qualitative Results

Visualizations on S3DIS

DeepGCNs.org
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Reduce Kernel Size

Reduce Network Depth

Reduce Network Width
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Wider Deeper

No Dilation
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More Results

GCN variants

DeepGCNs.org

• ResEdgeConv
• ResGraphSAGE
• ResGIN
• ResMRGCN
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Table 4. Comparisons of Deep GCNs variants on area 5 of S3DIS.

ResEdgeConv ResGIN

ResMRGCNResGraphSAGE
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More Results DeepGCNs.org

Table 5. Node classification of biological networks. 

Wider

Deeper

By John Morris.
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More Results DeepGCNs.org

By John Morris.

Table 6. Comparison of DeepGCNs with state-of-the-
art on PPI node classification.
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Table 7. Comparison of ResGCN-28 with other methods on PartNet Part Segmentation.
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https://www.deepgcns.org

TensorFlow Repo Pytorch Repo750+ Stars 
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Can we learn how to design Deep GCN 
architectures automatically?
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Can we learn how to design Deep GCN 
architectures automatically?

Neural Architecture Search!
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SGAS: Sequential Greedy Architecture Search (arXiv 2019, Guohao Li et.al)

https://sites.google.com/kaust.edu.sa/sgas

SGAS: Sequential Greedy Architecture Search
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SGAS: Sequential Greedy Architecture Search

Figure 2. Illustration of Sequential Greedy Architecture Search. 

Aiming to alleviate this common issue, we 
introduce sequential greedy architecture 
search (SGAS), an efficient method for 
neural architecture search. 

By dividing the search procedure into 
sub-problems, SGAS chooses and 
prunes candidate operations in a greedy 
fashion.
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SGAS: Sequential Greedy Architecture Search

Figure 2. Illustration of Sequential Greedy Architecture Search. 

We apply SGAS to search architectures for 
Convolutional Neural Networks (CNN) and 
Graph Convolutional Networks (GCN). 

Extensive experiments show that SGAS is 
able to find SOTA architectures with 
minimal computational cost for tasks such 
as:
• image classification,
• point cloud classification,
• node classification in protein-protein 

interaction graphs.
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SGAS: Sequential Greedy Architecture Search

Figure 2. Illustration of Sequential Greedy Architecture Search. 
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Figure 2. Illustration of Sequential Greedy Architecture Search. 
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SGAS: Sequential Greedy Architecture Search

Figure 2. Illustration of Sequential Greedy Architecture Search. 
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SGAS: Sequential Greedy Architecture Search

Figure 2. Illustration of Sequential Greedy Architecture Search. 
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2
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Repeat…
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Results – SGAS for GCN on ModelNet

(a) Normal cell of the best model with SGAS (Cri. 1) on ModelNet

(b) Normal cell of the best model with SGAS (Cri. 2) on ModelNet
Table 3. Comparison with state-of-the-art 

architectures for 3D object classification on 
ModelNet40.
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Results – SGAS for GCN on PPI

(a) Normal cell of the best model with SGAS (Cri. 1) on PPI

(b) Normal cell of the best model with SGAS (Cri. 2) on PPI

Table 4. Comparison with state-of-the-art 
architectures for node classification on PPI.
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Results – SGAS for CNN on CIFAR-10

Table 1. Performance comparison with state-of-the-art image classifiers on CIFAR-10.
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Results – SGAS for CNN on CIFAR-10

(a) Normal cell of the best model with SGAS (Cri. 1) on CIFAR-10 (b) Reduction cell of the best model with SGAS (Cri. 1) on CIFAR-10

(c) Normal cell of the best model with SGAS (Cri. 2) on CIFAR-10 (d) Reduction cell of the best model with SGAS (Cri. 2) on CIFAR-10
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Results – SGAS for CNN on ImageNet

Table 2. Performance comparison with state-of-the-art image classifiers on ImageNet.
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Results – SGAS for CNN on ImageNet

(a) Normal cell of the best model with SGAS (Cri. 1) on ImageNet (b) Reduction cell of the best model with SGAS (Cri. 1) on ImageNet

(c) Normal cell of the best model with SGAS (Cri. 2) on ImageNet (d) Reduction cell of the best model with SGAS (Cri. 2) on ImageNet
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Follow-up works DeepGCNs.org

SGAS: Sequential Greedy Architecture 
Search. Guohao Li. et al.

PointRGCN: Graph Convolution Networks 
for 3D Vehicles Detection Refinement. 
Jesue Zarzar. et al.

PU-GCN: Point Cloud Upsampling via 
Graph Convolutional Network. 
Guocheng Qian. et al.
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Follow-up works DeepGCNs.org

G-TAD: Sub-Graph Localization for Temporal 
Action Detection. Mengmeng xu. et al.

A Neural Rendering Framework for Free-
Viewpoint Relighting. Zhang Chen. et al.
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Useful materials or tools DeepGCNs.org

Ø Thomas Kipf: http://tkipf.github.io/misc/SlidesCambridge.pdf

Ø Stanford SNAP: http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part2-
gnns.pdf

http://tkipf.github.io/misc/SlidesCambridge.pdf
http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part2-gnns.pdf
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Useful materials or tools DeepGCNs.org

Ø Thomas Kipf: http://tkipf.github.io/misc/SlidesCambridge.pdf

Ø Stanford SNAP: http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part2-
gnns.pdf

Ø Pytorch Geometric: https://pytorch-geometric.readthedocs.io

Ø Deep Graph Library: https://www.dgl.ai/

Ø TensorFlow Graphics: https://github.com/tensorflow/graphics

http://tkipf.github.io/misc/SlidesCambridge.pdf
http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part2-gnns.pdf
https://pytorch-geometric.readthedocs.io/
https://www.dgl.ai/
https://github.com/tensorflow/graphics
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SGAS: Sequential Greedy Architecture Search (arXiv’2019)
Guohao Li*, Guocheng Qian*, Itzel C. Delgadillo*, Matthias Müller, Ali Thabet, Bernard Ghanem

Contact:   guohao.li@kaust.edu.sa
About me: https://ghli.org

http://kaust.edu.sa
https://ghli.org/

