

DeepGCNs.org

DeepGCNs

Guohao Li, KAUST

JKNet (Xu et al., 2018), DeepGCNs (Li et al., 2019; 2020), Aff-GCN (Gong et al., 2020), GCNII (Chen et al., 2020), Implicit Acceleration (Xu et al., 2021), GNN1000 (Li et al., 2021)

SKIP Connection DropEdge (Rong et al., 2020), DropConnect (Hasanzadeh et al., Normalization & 2020), PairNorm (Zhao & Akoglu, 2019), WeightNorm (Oono Training "Deep" GNNs & Suzuki, 2019), DiffGroupNorm (Zhou et al., 2020), Regularization Efficient Propagation GraphNorm (Cai et al., 2020) SGC (Wu et al., 2019), APPNP (Klicpera et al., 2019), PPRGo (Bojchevski et al., 2020), DAGNN (Liu et al., 2020), SIGN (Frasca et al., 2020)

JKNet (Xu et al., 2018), **DeepGCNs (Li et al., 2019; 2020)**, Aff-GCN (Gong et al., 2020), GCNII (Chen et al., 2020), Implicit Acceleration (Xu et al., 2021), **GNN1000 (Li et ai., 2021)**

SKIP Connection DropEdge (Rong et al., 2020), DropConnect (Hasanzadeh et al., Normalization & 2020), PairNorm (Zhao & Akoglu, 2019), WeightNorm (Oono Training "Deep" GNNs & Suzuki, 2019), DiffGroupNorm (Zhou et al., 2020), Regularization Efficient Propagation GraphNorm (Cai et al., 2020) SGC (Wu et al., 2019), APPNP (Klicpera et al., 2019), PPRGo (Bojchevski et al., 2020), DAGNN (Liu et al., 2020), SIGN (Frasca et al., 2020)

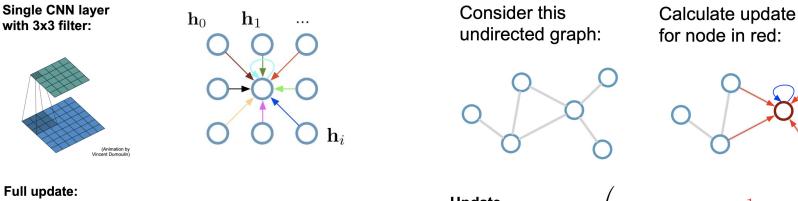
DeepGCNs for Representation Learning on Graphs

DeepGCNs: Can GCNs Go as Deep as CNNs? (ICCV'2019, TPAMI)
DeeperGCN: All You Need to Train Deeper GCNs (arXiv'2020)
Training Graph Neural Networks with 1000 Layers (ICML'2021)

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

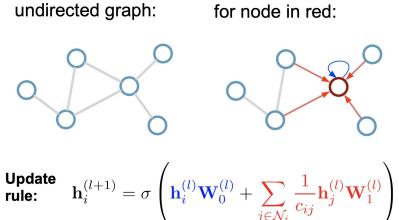
Guohao Li

CNN vs. GCN - Comparison



$$\mathbf{h}_{4}^{(l+1)} = \sigma \left(\mathbf{W}_{0}^{(l)} \mathbf{h}_{0}^{(l)} + \mathbf{W}_{1}^{(l)} \mathbf{h}_{1}^{(l)} + \dots + \mathbf{W}_{8}^{(l)} \mathbf{h}_{8}^{(l)} \right)$$

Convolutional Neural Network (CNN)



Graph Convolutional Network (GCN)

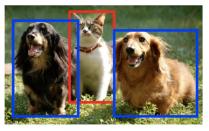
Slides by Thomas Kipf

with 3x3 filter:

Full update:

Why do we need graph convolutional networks?

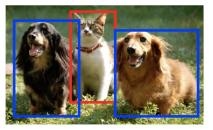
جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technoloay



Grid Data: • Image

CAT, DOG

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology



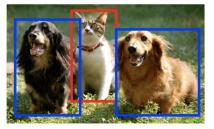
Grid Data:

• Image

• Video

CAT, DOG

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

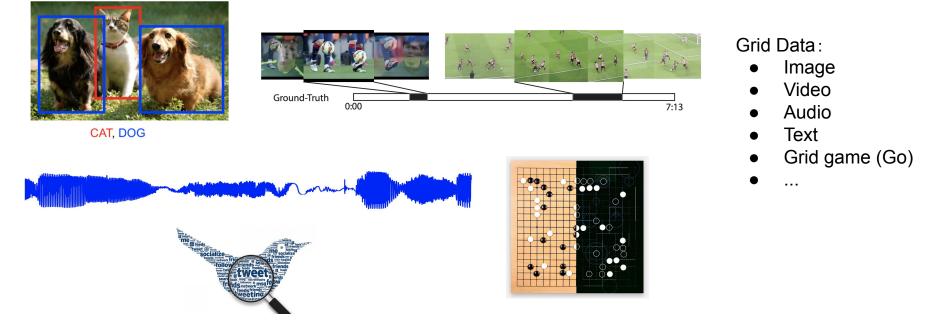


CAT, DOG

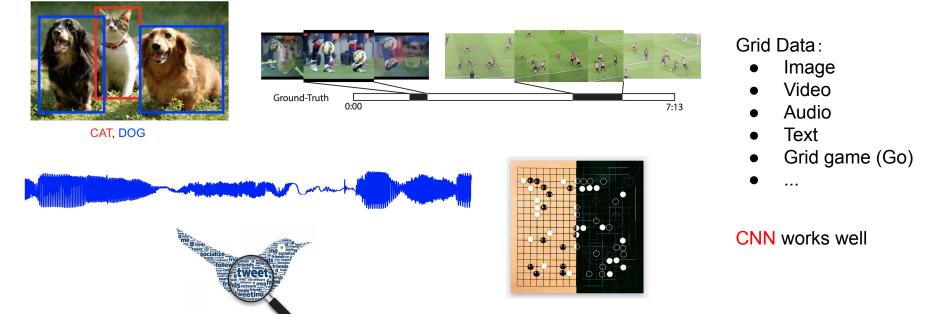
Grid Data:

- Image
- Video
- Audio
 - Text

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology



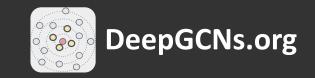
جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

How about non-grid graph structured data?

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology



Lots of real-world applications need to deal with Non-Grid data

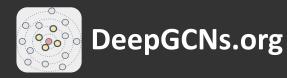


جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

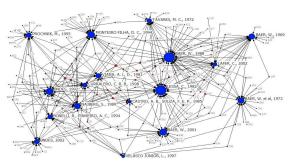
DeepGCNs for Representation Learning on Graphs

General Graphs:

- Social Networks
- Citation Networks



Lots of real-world applications need to deal with Non-Grid data



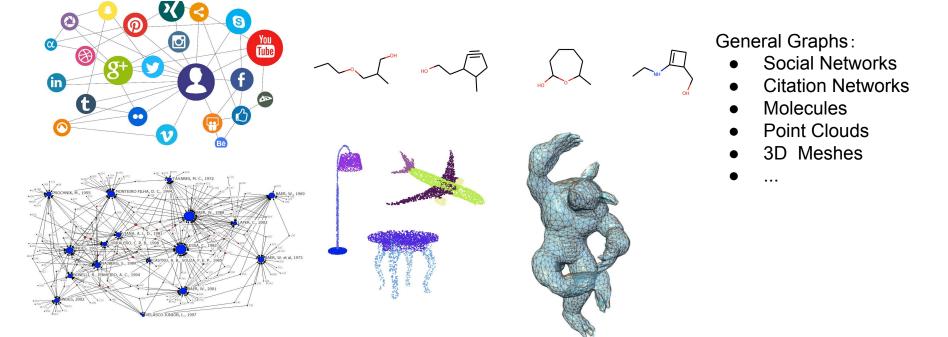
جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

DeepGCNs for Representation Learning on Graphs

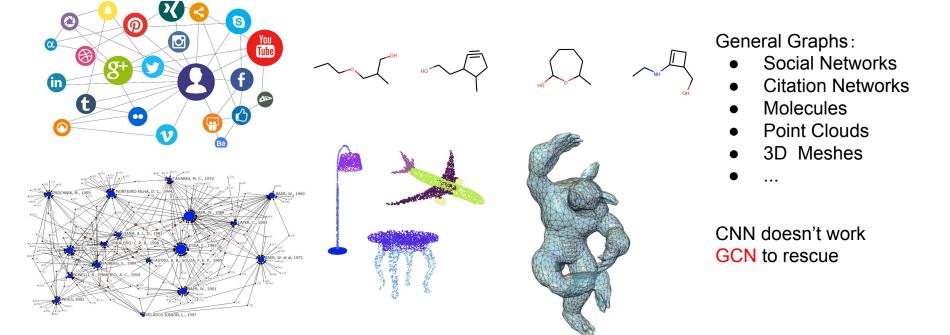
General Graphs:

- Social Networks
- Citation Networks
- Molecules

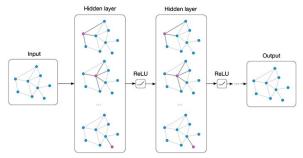
Lots of real-world applications need to deal with Non-Grid data

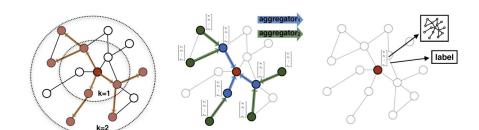


Lots of real-world applications need to deal with Non-Grid data



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

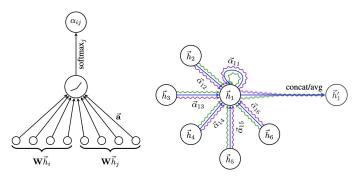




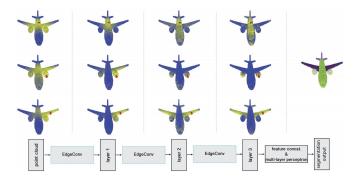
Kipf, T.N. and Welling, M., 2016. Semi-Supervised Classification with Graph Convolutional Networks.

Hamilton, W.L., Ying, R. and Leskovec, J., 2017. Inductive Representation Learning on Large Graphs.

Most of SOTA GCNs are not deeper than 3 or 4 layers.

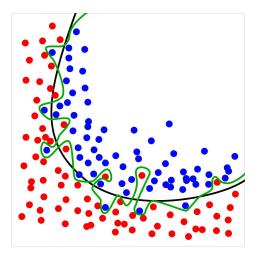


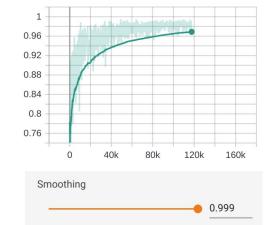
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. and Bengio, Y., 2018. Graph Attention Networks.

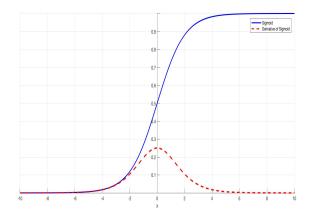


Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M. and Solomon, J.M., 2018. Dynamic Graph CNN for Learning on Point Clouds.

Why GCNs are limited to shallow structures?







Over-fitting

Over-smoothing

Vanishing Gradient

Figures from https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484

DeepGCNs for Representation Learning on Graphs

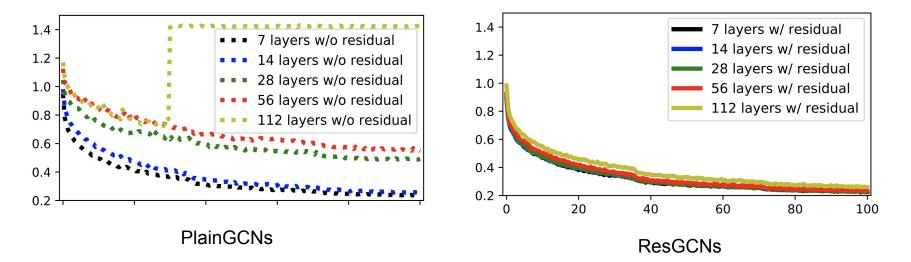
DeepGCNs: Can GCNs Go as Deep as CNNs? (ICCV'2019, TPAMI)
DeeperGCN: All You Need to Train Deeper GCNs (arXiv'2020)
Training Graph Neural Networks with 1000 Layers (ICML'2021)

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Guohao Li

Training Loss of GCNs with varying depth

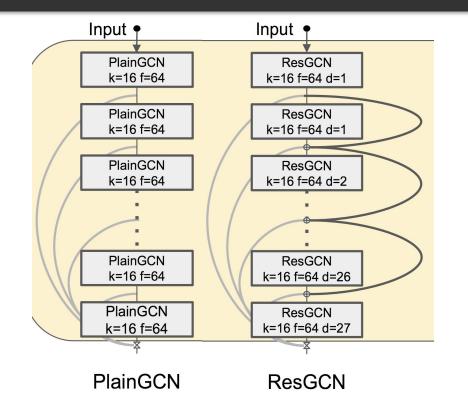
Deeper GCNs don't converge well.



DeepGCNs for Representation Learning on Graphs

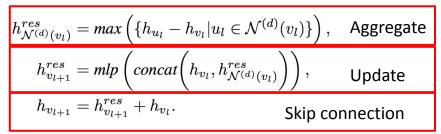
Even a 112-layer deep GCN converges well!!!

Residual Graph Connections



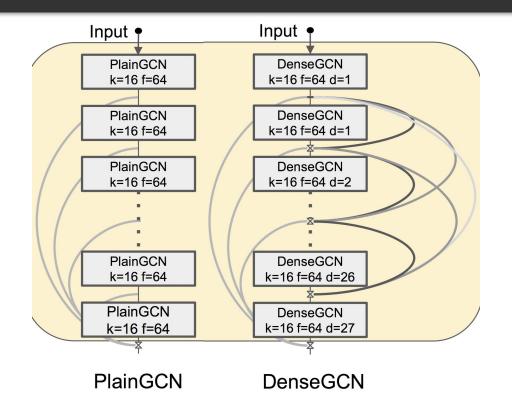
$$egin{aligned} \mathcal{G}_{l+1} &= \mathcal{H}(\mathcal{G}_l, \mathcal{W}_l) \ &= \mathcal{F}(\mathcal{G}_l, \mathcal{W}_l) + \mathcal{G}_l \end{aligned}$$

An example: ResMRGCN



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

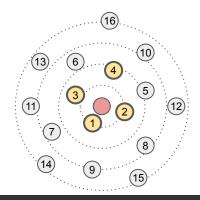
Dense Graph Connections

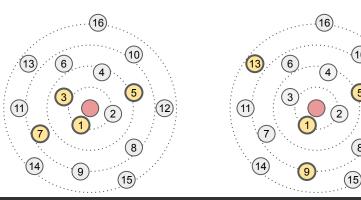


$$egin{aligned} \mathcal{G}_{l+1} &= \mathcal{H}(\mathcal{G}_l, \mathcal{W}_l) \ &= \mathcal{T}(\mathcal{F}(\mathcal{G}_l, \mathcal{W}_l), \mathcal{G}_l) \ &= \mathcal{T}(\mathcal{F}(\mathcal{G}_l, \mathcal{W}_l), ..., \mathcal{F}(\mathcal{G}_0, \mathcal{W}_0), \mathcal{G}_0). \end{aligned}$$

Dilated Graph Convolutions

Dilated Convolution on a regular graph, e.g. 2D image

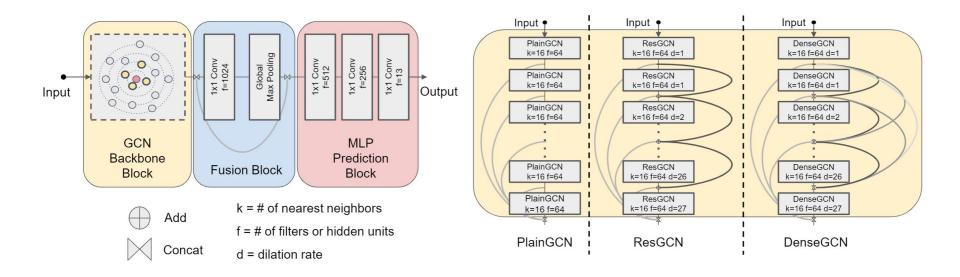




Dilated graph Convolution on an irregular graph, e.g. 3D point cloud

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

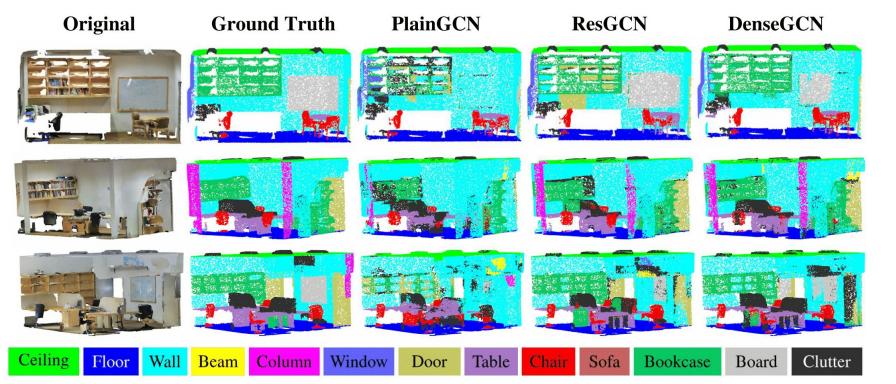
Deep Graph Convolutional Networks (DeepGCNs)



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Graph Learning on 3D Point Clouds

DeepGCNs.org



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

We outperform other SOTA in 9 out of 13 classes

Method	OA	mIOU	ceiling	floor	wall	beam	column	window	door	table	chair	sofa	bookcase	board	clutter
PointNet [29]	78.5	47.6	88.0	88.7	69.3	42.4	23.1	47.5	51.6	54.1	42.0	9.6	38.2	29.4	35.2
MS+CU [8]	79.2	47.8	88.6	95.8	67.3	36.9	24.9	48.6	52.3	51.9	45.1	10.6	36.8	24.7	37.5
G+RCU [8]	81.1	49.7	90.3	92.1	67.9	44.7	24.2	52.3	51.2	58.1	47.4	6.9	39.0	30.0	41.9
PointNet++ [31]	-	53.2	90.2	91.7	73.1	42.7	21.2	49.7	42.3	62.7	59.0	19.6	45.8	48.2	45.6
3DRNN+CF [51]	86.9	56.3	92.9	93.8	73.1	42.5	25.9	47.6	59.2	60.4	66.7	24.8	57.0	36.7	51.6
DGCNN [43]	84.1	56.1	-	_	_	-	_	_	-	_	-	-	-		2
ResGCN-28 (Ours)	85.9	60.0	93.1	95.3	78.2	33.9	37.4	56.1	68.2	64.9	61.0	34.6	51.5	51.1	54.4

Table 1. Comparison of ResGCN-28 with state-of-the-art.

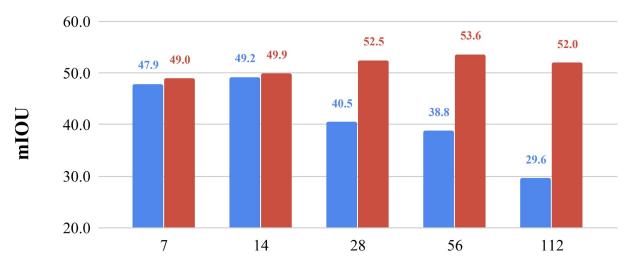
	Class	DGCNN [6]	ResGCN-28 (Ours)	
Consistent improvements across all the classes.	ceiling floor wall beam column window door table chair sofa bookcase board clutter	92.7 93.6 77.5 32.0 36.3 52.5 63.7 61.1 60.2 20.5 47.7 42.7 51.5	93.1 95.3 78.2 33.9 37.4 56.1 68.2 64.9 61.0 34.6 51.5 51.1 54.4	~ 4% boost in mIOU.
	mIOU	56.3	60.0	

Table 2. Comparison of ResGCN-28 with DGCNN* (Our shallow baseline model).

* We reproduced the results of DGCNN on all classes since the results across all classes were not provided in the DGCNN paper.

PlainGCN VS. ResGCN

PlainGCN ResGCN



Number of layers

Application in Biology

Wider

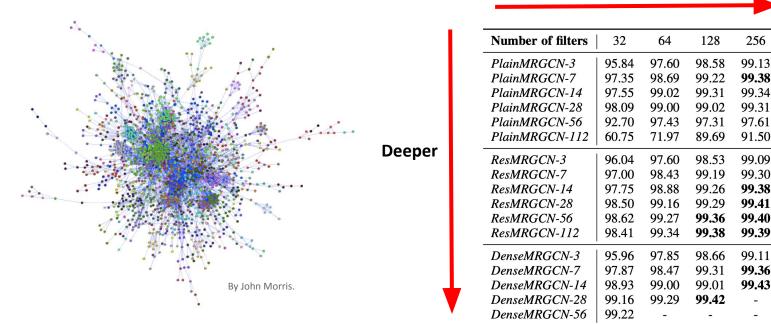
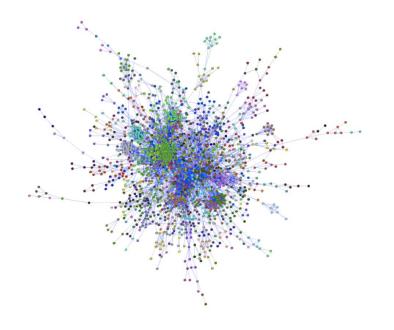


Table 2. Node classification of biological networks.

Application in Biology

DeepGCNs.org



Model	m-F1 score (%)
GraphSAGE [42]	61.20
GATConv [43]	97.30
VR-GCN [57]	97.80
GaAN [58]	98.71
GeniePath [59]	98.50
Cluster-GCN [56]	99.36
ResMRGCN-28 (Ours) DenseMRGCN-14 (Ours)	99.41 99.43

Table 3. Comparison of DeepGCNs with state-of-the-art on PPI node classification.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

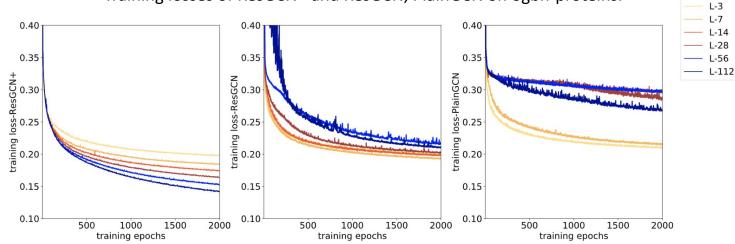
DeepGCNs for Representation Learning on Graphs

DeepGCNs: Can GCNs Go as Deep as CNNs? (ICCV'2019, TPAMI)
DeeperGCN: All You Need to Train Deeper GCNs (arXiv'2020)
Training Graph Neural Networks with 1000 Layers (ICML'2021)

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Guohao Li

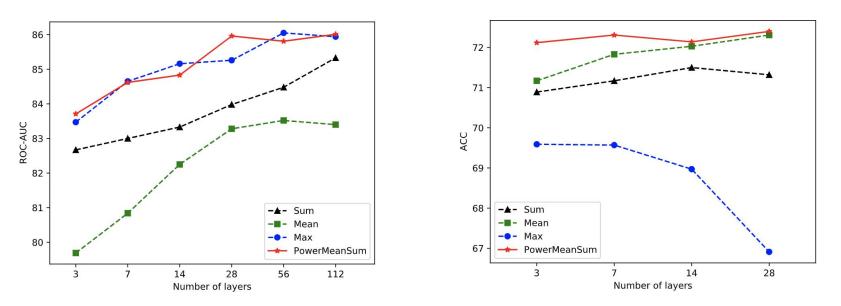
DeeperGCN - Residual Connections



Training losses of ResGCN+ and ResGCN, PlainGCN on ogbn-proteins.

Preactivated residual connections work better.

DeeperGCN - Aggregation Functions



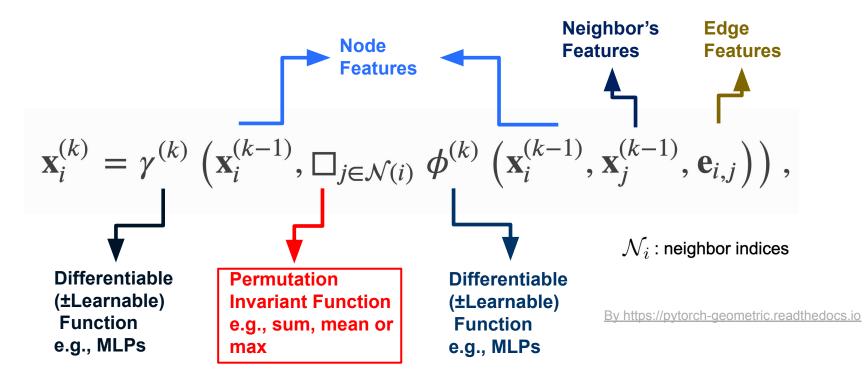
(a) different aggregators on the obgn-protein dataset.

(b) different aggregations on the obgn-arxiv dataset.

DeepGCNs.org

Aggregation functions perform very differently on different datasets.

DeeperGCN - Message Passing



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

DeeperGCN - Aggregation Functions DeepGCNs.org

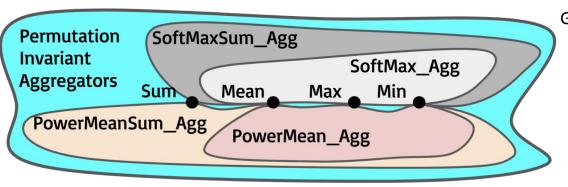


Illustration of Generalized Message Aggregation Functions

Generalized mean-max aggregation function:

 $SoftMax_Agg_{\beta}(\cdot) = \sum_{u \in \mathcal{N}(v)} \frac{\exp(\beta \mathbf{m}_{vu})}{\sum_{i \in \mathcal{N}(v)} \exp(\beta \mathbf{m}_{vi})} \cdot \mathbf{m}_{vu}.$

PowerMean_Agg_p(·) =
$$\left(\frac{1}{|\mathcal{N}(v)|}\sum_{u\in\mathcal{N}(v)}\mathbf{m}_{vu}^p\right)^{1/p}$$
.

Generalized mean-max-sum aggregation function:

 $\left|\mathcal{N}(v)\right|^{y}\cdot \zeta_{x}(\cdot)$

Differentiable aggregation functions

DeeperGCN - Results

ogbn-proteins	GraphSAGE 77.68 ± 0.20	GCN 72.51 ± 0.35	GaAN 78.03 ± 0.73				Ours 86.16 ± 0.16
ogbn-arxiv	GraphSAGE 71.49 ± 0.27	GCN 71.74 ± 0.29	GaAN 71.97 ± 0.24	GCNII 72.74 ± 0.16	JKNet 72.19 ± 0.21	DAGNN 72.09 ± 0.25	72.32 ± 0.27
ogbn-products	GraphSAGE 78.29 ± 0.16	GCN 75.64 ± 0.21	ClusterGCN 78.97 ± 0.33	GraphSAINT 80.27 ± 0.26	GAT 79.45 ± 0.59		81.64 ± 0.30
	GIN	GCN	GIN*	GCN*	HIMP		Ĩ
ogbg-molhiv	75.58 ± 1.40	76.06 ± 0.97	77.07 ± 1.49	75.99 ± 1.19	78.80 ± 0.82		78.87 ± 1.24
ogbg-molpcba	22.66 ± 0.28	20.20 ± 0.24	27.03 ± 0.23	24.24 ± 0.34			$27.81 \pm 0.38^{*}$
ogbg-ppa	68.92 ± 1.00	68.39 ± 0.84	70.37 ± 1.07	68.57 ± 0.61			77.12 ± 0.71
	GraphSAGE	GCN	DeepWalk				
ogbl-collab	48.10 ± 0.81	44.75 ± 1.07	50.37 ± 0.34				52.73 ± 0.47

Table 4. DeeperGCN achieves SOTA results on 6 OGB datasets.

DeeperGCN - Results

Leaderboard for ogbn-products

The classification accuracy on the test and validation sets. The higher, the better.

Package: >=1.1.1

Rank	Method	Test Accuracy	Validation Accuracy	Contact	References	#Params	Hardware	Date
1	MLP + C&S	0.8418 ± 0.0007	0.9147 ± 0.0009	Horace He (Cornell)	Paper, Code	96,247	GeForce RTX 2080 (11GB GPU)	Oct 27, 2020
2	Linear + C&S	0.8301 ± 0.0001	0.9134 ± 0.0001	Horace He (Cornell)	Paper, Code	10,763	GeForce RTX 2080 (11GB GPU)	Oct 27, 2020
3	UniMP	0.8256 ± 0.0031	0.9308 ± 0.0017	Yunsheng Shi (PGL team)	Paper, Code	1,475,605	Tesla V100 (32GB)	Sep 8, 2020
4	Plain Linear + C&S	0.8254 ± 0.0003	0.9103 ± 0.0001	Horace He (Cornell)	Paper, Code	4,747	GeForce RTX 2080 (11GB GPU)	Oct 27, 2020
5	DeeperGCN+FLAG	0.8193 ± 0.0031	0.9221 ± 0.0037	Kezhi Kong	Paper, Code	253,743	NVIDIA Tesla V100 (32GB GPU)	Oct 20, 2020
6	GAT+FLAG	0.8176 ± 0.0045	0.9251 ± 0.0006	Kezhi Kong	Paper, Code	751,574	GeForce RTX 2080 Ti (11GB GPU)	Oct 20, 2020
7	GraphSAGE + C&S + node2vec	0.8154 ± 0.0050	0.9238 ± 0.0006	HuiXuan Chi	Paper, Code	103,983	Tesla V100 (32GB)	Apr 6, 2021
8	DeeperGCN	0.8098 ± 0.0020	0.9238 ± 0.0009	Guohao Li - DeepGCNs.org	Paper, Code	253,743	NVIDIA Tesla V100 (32GB GPU)	Jun 28, 2020

Leaderboard for ogbn-proteins

The ROC-AUC score on the test and validation sets. The higher, the better.

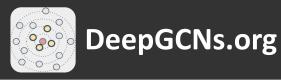
Package: >=1.1.1

Rank	Method	Test ROC- AUC	Validation ROC- AUC	Contact	References	#Params	Hardware	Date
1	UniMP+CrossEdgeFeat	0.8691 ± 0.0018	0.9258 ± 0.0009	Yelrose (PGL Team)	Paper, Code	1,959,984	Tesla V100 (32GB)	Nov 24, 2020
2	GAT	0.8682 ± 0.0021	0.9194 ± 0.0003	Yangkun Wang (DGL Team)	Paper, Code	2,475,232	p3.8xlarge (15GB GPU)	Nov 6, 2020
3	UniMP	0.8642 ± 0.0008	0.9175 ± 0.0006	Yunsheng Shi (PGL team)	Paper, Code	1,909,104	Tesla V100 (32GB)	Sep 8, 2020
4	DeeperGCN+FLAG	0.8596 ± 0.0027	0.9132 ± 0.0022	Kezhi Kong	Paper, Code	2,374,568	GeForce RTX 2080 Ti (11GB GPU)	Oct 20, 2020
5	DeeperGCN	0.8580 ± 0.0017	0.9106 ± 0.0016	Guohao Li - DeepGCNs.org	Paper, Code	2,374,568	NVIDIA Tesla V100 (32GB GPU)	Jun 16, 2020
6	DeepGCN	0.8496 ± 0.0028	0.8971 ± 0.0011	Guohao Li - DeepGCNs.org	Paper, Code	2,374,456	NVIDIA Tesla V100 (32GB GPU)	Jun 20, 2020

DeeperGCN ranked top 1 on several datasets from Jun. 2020 to Sep 2020.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

DeepGCNs for Representation Learning on Graphs



DeepGCNs for Representation Learning on Graphs

DeepGCNs: Can GCNs Go as Deep as CNNs? (ICCV'2019, TPAMI)
DeeperGCN: All You Need to Train Deeper GCNs (arXiv'2020)
Training Graph Neural Networks with 1000 Layers (ICML'2021)

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Guohao Li

Memory complexity of training GNNs

Full batch:	Mini-batch:	
O(LND) L - number of layers	Cluster-GCN: O(LND) - > O(LBD)	This work:
N - number of nodes D - number of features	B - number of nodes in subgraphs, B <n< td=""><td>O(LND) - > O(ND)</td></n<>	O(LND) - > O(ND)
(assume D is the same for all the layers)		

- How can we reduce memory complexity?

- Can we reduce the memory complexity in the L dimension?

Chiang, Wei-Lin, et al. "Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks." SIGKDD. 2019.

Related work

The Reversible Residual Network: Backpropagation Without Storing Activations

Aidan N. Gomez^{*1}, Mengye Ren^{*1,2,3}, Raquel Urtasun^{1,2,3}, Roger B. Grosse^{1,2} University of Toronto¹ Vector Institute for Artificial Intelligence² Uber Advanced Technologies Group³ {aidan, mren, urtasun, rgrosse}@cs.toronto.edu

Deep Equilibrium Models

Shaojie Bai Carnegie Mellon University J. Zico Kolter Carnegie Mellon University Bosch Center for AI Vladlen Koltun Intel Labs DNN: **O(L)**

Reversible CNN / DEQ: O(1)

*only consider the L dimension

Memory Efficient GNNs

 $\langle X_1, X_2, ..., X_C \rangle \mapsto \langle X'_1, X'_2, ..., X'_C \rangle$ **Reversible GNN:** Forward: $X_0' = \sum_{i=2}^{\smile} X_i$ $X'_{i} = f_{w_{i}}(X'_{i-1}, A, U) + X_{i}, \ i \in \{1, \cdots, C\},\$ Inverse: $X_i = X'_i - f_{w_i}(X'_{i-1}, A, U), \ i \in \{2, \cdots, C\}$ $X_0' = \sum_{i=2}^{C} X_i$ $X_1 = X'_1 - f_{w_1}(X'_0, A, U).$

Weight-tied Reversible GNN:

$$f_{w_i}^{(1)} := f_{w_i}^{(2)} \dots := f_{w_i}^{(L)}, \ i \in \{1, \cdots, C\}$$

DEQ-GNN:

$$Z^* = f_w^{\text{DEQ}}(Z^*, X, A, U),$$

Do not need to store the intermediate node features.

O(LND) - > O(ND)

Memory Efficient GNNs

 $\langle X_1, X_2, ..., X_C \rangle \mapsto \langle X'_1, X'_2, ..., X'_C \rangle$ **Reversible GNN:** Forward: C $X_0' = \sum_{i=2}^{\smile} X_i$ $X'_{i} = f_{w_{i}}(X'_{i-1}, A, U) + X_{i}, \ i \in \{1, \cdots, C\},$ Inverse: $X_{i} = X'_{i} - f_{w_{i}}(X'_{i-1}, A, U), \ i \in \{2, \cdots, C\}$ $X_0' = \sum_{i=2}^C X_i$ $X_1 = X'_1 - f_{w_1}(X'_0, A, U).$

When #group =2: $\langle X_1, X_2 \rangle \mapsto \langle X_1', X_2' \rangle$

Forward:

$$X'_{0} = X_{2}$$

$$X'_{1} = f_{w_{1}}(X'_{0}, A, U) + X_{1}$$

$$X'_{2} = f_{w_{2}}(X'_{1}, A, U) + X_{2}$$

Inverse:

$$X_{2} = X'_{2} - f_{w_{2}}(X'_{1}, A, U)$$
$$X'_{0} = X_{2}$$
$$X_{1} = X'_{1} - f_{w_{1}}(X'_{0}, A, U).$$

DEQ-GNN:

 $Z^* = f_w^{\mathrm{DEQ}}(Z^*, X, A, U),$

$$\frac{\partial \ell}{\partial (\cdot)} = -\frac{\partial \ell}{\partial \mathbf{z}_{1:T}^{\star}} \big(J_{g_{\theta}}^{-1} \big|_{\mathbf{z}_{1:T}^{\star}} \big) \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial (\cdot)} = -\frac{\partial \ell}{\partial h} \frac{\partial h}{\partial \mathbf{z}_{1:T}^{\star}} \big(J_{g_{\theta}}^{-1} \big|_{\mathbf{z}_{1:T}^{\star}} \big) \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial (\cdot)},$$

Results: Summary

2. We can train huge overparameterized RevGNNs on a single GPU and achieve the best performance.

3. We can train smaller GNNs with weight-tying or DEQ and still reach promising results

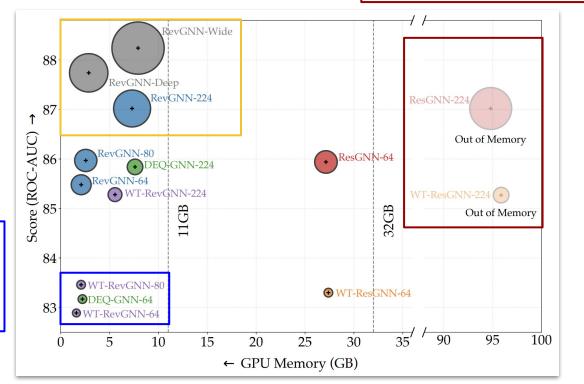


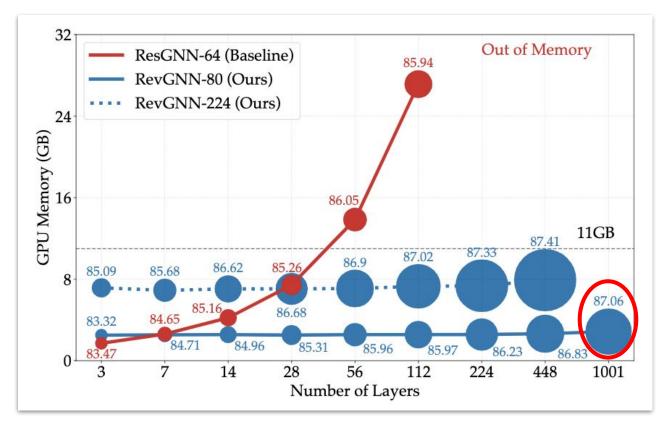
Fig. Performance versus GPU memory consumption on the ogbn-proteins dataset for 112 layer deep networks.

1. Regular GNNs quickly run out of memory.

Results: Complexity Analysis

Method	Memory	Params	Time
Full-batch GNN	$\mathcal{O}(LND)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(L \ A\ _0 D + LND^2)$
GraphSAGE	$\mathcal{O}(R^L BD)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(R^L N D^2)$
VR-GCN	$\mathcal{O}(LND)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(L \ A\ _0 D + LND^2 + R^L ND^2)$
FastGCN Cluster-GCN	$\mathcal{O}(LRBD) \ \mathcal{O}(LBD)$	${{\cal O}(LD^2) \over {{\cal O}(LD^2)}}$	$\mathcal{O}(RLND^2) \ \mathcal{O}(L \left\ A ight\ _0 D + LND^2)$
GraphSAINT	$\mathcal{O}(LBD)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(L \ A\ _0^0 D + LND^2)$
Weight-tied GNN	$\mathcal{O}(LND)$	$\mathcal{O}(D^2)$	$\mathcal{O}(L \left\ A \right\ _0 D + LND^2)$
RevGNN	$\mathcal{O}(ND)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(L \left\ A \right\ _0 D + LND^2)$
WT-RevGNN	$\mathcal{O}(ND)$	$\mathcal{O}(D^2)$	$\mathcal{O}(L \left\ A\right\ _0 D + LND^2)$
DEQ-GNN	$\mathcal{O}(ND)$	$\mathcal{O}(D^2)$	$\mathcal{O}(K \left\ A \right\ _0 D + KND^2)$
RevGNN + Subgraph Sampling	$\mathcal{O}(BD)$	$\mathcal{O}(LD^2)$	$\mathcal{O}(L \left\ A \right\ _0 D + LND^2)$
WT-RevGNN + Subgraph Sampling	$\mathcal{O}(BD)$	$\mathcal{O}(D^2)$	$\mathcal{O}(L \left\ A\right\ _{0}^{\circ} D + LND^{2})$
DEQ-GNN + Subgraph Sampling	$\mathcal{O}(BD)$	$\mathcal{O}(D^2)$	$\mathcal{O}(K \left\ A \right\ _0 D + KND^2)$

Results: Constant Memory with RevGNN



Train 1001-layer GNN with only 2.86G peak GPU memory!

The deepest GNN by one order of magnitude.

Results: SOTA with RevGNN (ogbn-proteins)

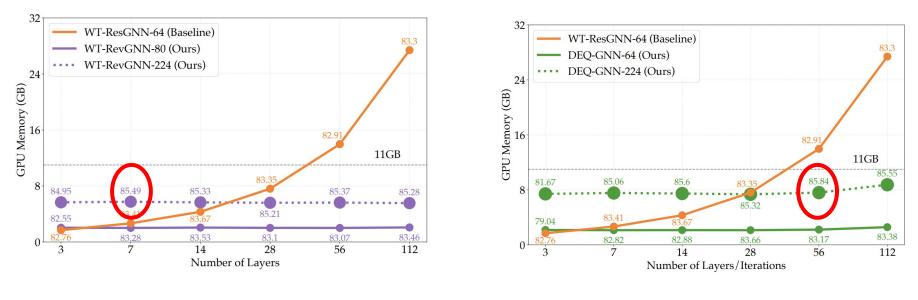
Rank	Method	Test ROC- AUC	Validation ROC- AUC	Contact	References	#Params	Hardware	Date
1	RevGNN-Wide	0.8824 ± 0.0015	0.9450 ± 0.0008	Guohao Li - DeepGCNs.org	Paper, Code	68,471,608	NVIDIA RTX 6000 (48G)	Jun 16, 2021
2	RevGNN-Deep	0.8774 ± 0.0013	0.9326 ± 0.0006	Guohao Li - DeepGCNs.org	Paper, Code	20,031,384	NVIDIA RTX 6000 (48G)	Jun 16, 2021
3	GAT+BoT	0.8765 ± 0.0008	0.9280 ± 0.0008	Yangkun Wang (DGL Team)	Paper, Code	2,484,192	Tesla A100 (40GB GPU)	Jun 16, 2021
4	GAT + labels + node2vec	0.8711 ± 0.0007	0.9217 ± 0.0011	Huixuan Chi	Paper, Code	6,360,470	Tesla V100 (32GB)	Jun 7, 2021
5	GIPA	0.8700 ± 0.0010	0.9187 ± 0.0003	Qinkai Zheng (GeaLearn Team)	Paper, Code	4,831,056	GeForce Titan RTX (24GB GPU)	May 13, 2021
6	UniMP+CrossEdgeFeat	0.8691 ± 0.0018	0.9258 ± 0.0009	Yelrose (PGL Team)	Paper, Code	1,959,984	Tesla V100 (32GB)	Nov 24, 2020
7	GAT+EdgeFeatureAtt	0.8682 ± 0.0021	0.9194 ± 0.0003	Yangkun Wang (DGL Team)	Paper, Code	2,475,232	p3.8xlarge (15GB GPU)	Nov 6, 2020
8	UniMP	0.8642 ± 0.0008	0.9175 ± 0.0006	Yunsheng Shi (PGL team)	Paper, Code	1,909,104	Tesla V100 (32GB)	Sep 8, 2020
9	DeeperGCN+FLAG	0.8596 ± 0.0027	0.9132 ± 0.0022	Kezhi Kong	Paper, Code	2,374,568	GeForce RTX 2080 Ti (11GB GPU)	Oct 20, 2020

68M parameters (about a half of GPT)

Results: SOTA with RevGNN (ogbn-arxiv)

Rank	Method	Test Accuracy	Validation Accuracy	Contact	References	#Params	Hardware	Date
1	RevGAT+N.Adj+LabelReuse+SelfKD	0.7426 ± 0.0017	0.7497 ± 0.0008	Guohao Li - DeepGCNs.org	Paper, Code	2,098,256	NVIDIA Tesla V100 (32GB GPU)	Jun 21, 2021
2	GAT+label reuse+self KD	0.7416 ± 0.0008	0.7514 ± 0.0004	Shunli Ren(CMIC@SJTU)	Paper, Code	1,441,580	GeForce RTX 1080Ti (11GB GPU)	Dec 15, 2020
3	RevGAT+NormAdj+LabelReuse	0.7402 ± 0.0018	0.7501 ± 0.0010	Guohao Li - DeepGCNs.org	Paper, Code	2,098,256	NVIDIA Tesla V100 (32GB GPU)	Jun 21, 2021
4	GAT+label+reuse+topo loss	0.7399 ± 0.0012	0.7513 ± 0.0009	Mengyang Niu (DAMO DI)	Paper, Code	1,441,580	Tesla V100 (16GB)	Dec 10, 2020
5	AGDN (GAT-HA+3_heads+labels)	0.7398 ± 0.0009	0.7519 ± 0.0009	Chuxiong Sun	Paper, Code	1,508,555	Tesla V100 (32GB GPU)	Jan 3, 2021
6	UniMP_v2	0.7397 ± 0.0015	0.7506 ± 0.0009	Weiyue Su (PGL Team)	Paper, Code	687,377	Tesla V100 (32GB)	Nov 24, 2020
7	GAT(norm.adj.)+label reuse+C&S	0.7395 ± 0.0012	0.7519 ± 0.0008	Yangkun Wang (DGL Team)	Paper, Code	1,441,580	p3.8xlarge (15GB GPU)	Nov 24, 2020
8	GAT+norm. adj.+label reuse	0.7391 ± 0.0012	0.7516 ± 0.0008	Yangkun Wang (DGL Team)	Paper, Code	1,441,580	p3.8xlarge (15GB GPU)	Nov 11, 2020
9	GAT + C&S	0.7386 ± 0.0014	0.7484 ± 0.0007	Horace He (Cornell)	Paper, Code	1,567,000	GeForce RTX 2080 (11GB GPU)	Oct 27, 2020

Results: Constant Memory and Parameter Complexities



WT-RevGNN

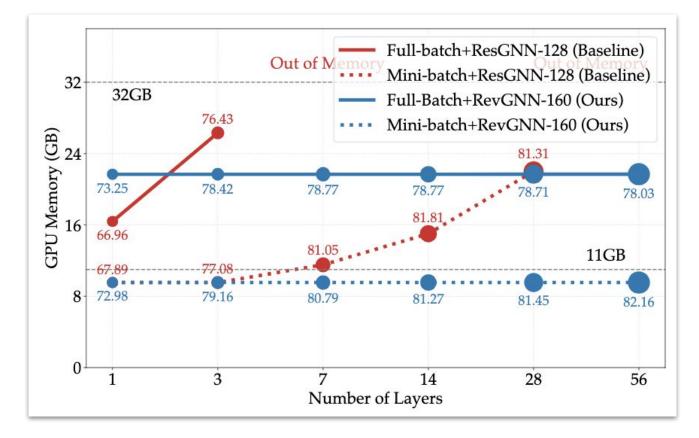
DEQ-RevGNN

Ablation: Different GNN operators (ogbn-arxiv)

Model	#L	#Ch	ACC \uparrow	$\operatorname{Mem} \downarrow$	Params
ResGCN	28	128	72.46 ± 0.29	11.15	491k
RevGCN	28	128	$\textbf{73.01} \pm 0.31$	1.84	262k
RevGCN	28	180	73.22 ± 0.19	2.73	500k
ResSAGE	28	128	72.46 ± 0.29	8.93	950k
RevSAGE	28	128	$\textbf{72.69} \pm 0.23$	1.17	491k
RevSAGE	28	180	72.73 ± 0.10	1.57	953k
ResGEN	28	128	72.32 ± 0.27	21.63	491k
RevGEN	28	128	$\textbf{72.34} \pm 0.18$	4.08	262k
RevGEN	28	180	$\textbf{72.93} \pm 0.10$	5.67	500k
ResGAT	5	768	73.76 ± 0.13	9.96	3.87M
RevGAT	5	768	74.02 ± 0.18	6.30	2.10M
RevGAT	5	1068	74.05 ± 0.11	8.49	3.88M

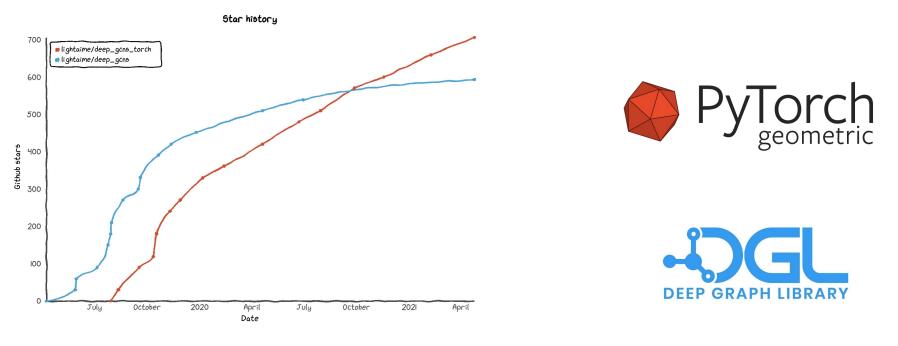
RevGNNs are generic and can be applied to different operators.

Ablation: Mini-batch Training (ogbn-products)



Mini-batch training further reduces the memory consumption of RevGNN and improves its accuracy.

Open Source



> 1300 Stars (Pytorch + Tensorflow)

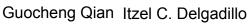
DeepGCNs for Representation Learning on Graphs

Bernard Ghanem

Guohao Li

Li Matthias Müller

Ali Thabet



Abdulellah Abualshour

Chenxin Xiong

Vladlen koltun

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

DeepGCNs for Representation Learning on Graphs

DeepGCNs.org

Thanks A & Q